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1 Introduction

Sets are the fundamental objects upon which modern mathematics is built.
In particular, the axioms of Zermelo-Fraenkel (ZF), among many other set
theories developed in the last century, are those most widely accepted as
foundation for mathematics. One often adds the Axiom of Choice to ZF
and obtains the stronger set theory ZFC. By the works of Kurt Gödel and
Paul Cohen, AC is proved to be independent of ZF, the other axioms of
ZFC. It is well known that there are many principles equivalent (in ZF) to
the Axiom of Choice. The most famous ones among them are the Well-
ordering Theorem and Zorn’s Lemma. These principles are characterized
by their non-constructiveness; they assert the existence of a certain object,
but do not provide a way to construct it. A typical kind of such principles
asserts that a maximal element exists in some ordered set. Zorn’s Lemma
is an example:

Zorn’s Lemma. Let (P,≤) be a poset such that every chain of P has an
upper bound. Then P has a maximal element, i.e. an element m ∈ P such
that if x ∈ P with m ≤ x then x = m.

In this paper we are especially interested in non-constructive principles
for systems of finite character.

Definition 1.1. If X is a set, a collection A of subsets of X is called a
system on X. Moreover, A has finite character whenever for every A ∈ A,
A ∈ A if and only if every finite subset of A is in A.

One of such principles is the Tukey-Teichmüller Theorem; we will refer to
it as TT. It ensures the existence of a maximal element, w.r.t. the inclusion,
in systems of finite character.

Tukey-Teichmüller Theorem. Let X be a set and A be a non-empty
system of finite character on X. Then A has a maximal element.

Also the Tukey-Teichmüller Theorem is known to be equivalent to the
Axiom of Choice. In Section 2, we will discuss further about TT and give a
proof of its equivalence with the Zorn’s Lemma.

In the thrid Section, we will turn to the discussion about Boolean al-
gebra, the Boolean Prime Ideal Theorem (PIT) and the Ultrafilter Lemma
(UL). PIT is also a non-constructive principle, but is strictly weaker than
the Axiom of Choice in ZF. In this paper, we will encounter many non-
constructive principles that are equivalent to this Prime Ideal Theorem.

Then, in Section 4, we will again treat a principle in systems of finite
character. As the first one of the two restrictions of the Tukey-Teichmüller
Theorem, the Restricted Tukey-Teichmüller Theorem will be introduced.
This restriction will turn out to be equivalent to the Prime Ideal Theorem.
Also many application of this principle will be presented.
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In the next, fifth Section, another restriction of the TT, named Finite
Cutset Lemma, will be the central principle to study. Also this restriction
will turn out to be equivalent to PIT, by a direct equivalence proof with
the other restriction RTT. Via this principle, the equivalences between PIT
and several other principles, including Alexander’s Subbase Theorem from
Topology, will be established too. At the end of Section 5, we will have
stated a full proof of the following equivalences.

Theorem 1.2. These principles are equivalent in ZF:

1. Boolean Prime Ideal Theorem (PIT)
2. Ultrafilter Lemma (UL)
3. Restricted Tukey-Teichmüller Theorem (RTT)
4. Finite Cutset Lemma (FC)
5. Intersection Lemma (IL)
6. Alexander’s Subbase Theorem (AS)
7. Cowen-Engeler Lemma (CE)
8. Generalized Consistency Theorem (GC)

In the last, 6th Section, we will observe some applications in Logic. We
will see that the Restricted Tukey-Teichmüller Theorem, which is developed
in Section 4, naturally proves important results for the propositional logic.

1.1 Notations

Here we introduce some notations, with which one may or may not be fa-
miliar.

• Given a set X, by P(X) we denote the powerset of X.
• Given a set X, by P<ω(X) we denote the set of all finite subsets of X.
• Given sets X, Y , we write X b Y if X is a finite subset of Y .

2 Tukey-Teichmüller Theorem

In this section we observe the equivalence between Zorn’s Lemma and the
Tukey-Teichmüller theorem. We will compare the two statements and give
a proof for the equivalence. Then we will see one of its natural applications,
namely the proof that every vector space has a basis.

In the Introduction section we have already seen a statement of Zorn’s
Lemma and TT. These are very similar to each other: both statements
require a certain condition on the order (poset vs. set system) of their
concern, then conclude that a maximal element in that order exists. In the
following lemma we will prove that the hypotheses of Zorn’s Lemma and
TT in some sense coincide. From this it will easily follow that ZL and TT
are equivalent.
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Lemma 2.1.

(a) For a non-empty system A of finite character on any set, the poset
(A,⊆) has an upper bound for all chains.

(b) For any poset (P,≤) with an upper bound for all chains, the system
(P,⊆) on P that consists of all chains of P is non-empty and has
finite character.

Proof. First we prove (a). Since A is non-empty, the empty chain has an
upper bound. Now, let C be a non-empty chain of (A,⊆). To prove

⋃
C ∈ A

using the finite character of A, we show that every finite subset of
⋃
C

belongs to A. Let F be a finite subset of
⋃
C. Then there exists E ∈ C with

F b E ∈ A, so that F ∈ A by the finite character of A. Therefore
⋃
C ∈ A.

Now, each C ∈ C satisfies C ⊆
⋃
C, so that

⋃
C is an upper bound of C in

A. We conclude that every chain of A has an upper bound.
For (b), we begin by noting that since ∅ is a chain of P , P is non-empty.

Now we prove that the system P has finite character, i.e. for all S ⊆ P ,
S ∈ P if and only if all finite subsets of S are in P. ‘only if ’: Suppose
S ∈ P. If S′ is a finite subset of S then, since S is a chain, S′ is also a chain,
hence S′ ∈ P. For ‘if’, we prove the contrapositive. Suppose that S /∈ P.
Then S is no chain of P , so there are p, q ∈ S s.t. p � q and q � p. Then
{p, q} /∈ P because it is no chain of P . So not all finite subsets of S are in
P, as desired. This proves that P has finite character.

Then we establish the equivalence.

Theorem 2.2. Zorn’s Lemma and the Tukey-Teichmüller Theorem are equiv-
alent.

Proof. First, we prove the Tukey-Teichmüller Theorem using Zorn’s Lemma.
Let A be a non-empty system on a set X. Then by Lemma 2.1(a), the poset
(A,⊆) has an upper bound for each chain. Therefore, by Zorn’s Lemma, we
obtain a maximal element of A with respect to the inclusion, as desired.

Now, we prove the Zorn’s Lemma using TT. Let (P,⊆) be a poset with
an upper bound for each chain. By Lemma 2.1(b), the system (P,⊆) on P
that consists of all chains of P is non-empty and has finite character. Thus
by TT, we obtain a maximal element M of P. Since M is a chain of P ,
there is an upper bound m of M .

We claim that m is a maximal element of (P,⊆). Let x ∈ P s.t. m ≤ x.
Then M ∪ {x} is a chain of P and M ⊆ M ∪ {x}. But M is maximal, so
M ∪ {x} = M . Therefore x ∈ M . Since m is an upper bound of M , x ≤ m.
Thus x = m, which proves that m is also maximal in (P,⊆), as desired.

We conclude that Zorn’s Lemma and the Tukey-Teichmüller Theorem
are equivalent.
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Now we introduce the enriched form of the Tukey-Teichmüller Theorem,
whose formulation slightly differs from the original, plain form of TT. While
the plain form just says that some maximal element exists, the enriched form
ensures the existence of a maximal element greater than a chosen element.

TT (enriched form). Let X be a set, A a system of finite character on X.
Then for all A ∈ A, there is a maximal element M ∈ A such that A ⊆ M .

Note that in the enriched form, we have relaxed the requirement of non-
emptyness for A. In the plain form we had to avoid the case A = ∅ because
otherwise the statement just becomes false. But in the enriched form, the
case A = ∅ is also alright, as we can see.

In the following we prove that in ZF, the two forms of TT are actually
equivalent.

Theorem 2.3. The plain form and the enriched form of TT are equivalent.

Proof. If the enriched form holds, the plain version is clearly true, because
we may invoke the enriched form on any A ∈ A.

Now we prove the enriched form using the plain form. Let X, A and A
be as in the statement. Define

B = {B ⊆ X : B ∪A ∈ A}.

Note that B contains all supersets A′ ∈ A of A because A′ ∪A = A′ ∈ A.
We prove that the system B on X has finite character, i.e. for all B ⊆ X,

X ∈ B if and only if all finite subsets of B are in B. ‘only if’: Suppose B ∈ B.
Let F be a finite subset of B. Then B∪A ∈ A. Since F ∪A ⊆ B∪A and so
all finite subsets of F ∪A are finite subsets of B ∪A, by the finite character
of A, we conclude that F ∪A ∈ A. So F ∈ B, as desired. For ‘if’, we prove
the contrapositive. Suppose B /∈ B. We look for a finite subset of B that is
not in B. Then B ∪ A /∈ A. Thus there is a finite subset B′ ∪ A′ of B ∪ A,
where B′ b B and A′ b A, such that B′∪A′ /∈ A. Since B′∪A′ b B′∪A, by
the finite character of A, we also have that B′ ∪ A /∈ A. Therefore B′ /∈ A;
this proves ‘if’ because B′ b B.

We note that A ∈ B 6= ∅ because A ∪ A = A ∈ A. Thus we may
apply the plain TT to B and obtain a maximal element M ∈ B. It follows
that M ∪ A ∈ A and so (M ∪ A) ∪ A ∈ A. Since M is maximal in B
and M ⊆ M ∪ A, we have that M = M ∪ A and so A ⊆ M . Now, since all
supersets of A in A are in B and M ⊇ A is maximal in B, M is also maximal
in A, as desired.

We conclude that the plain form indeed implies the enriched form.

We will often encounter this phenomenon of the equivalent plain and
enriched forms. In fact, as well as the restrictions of TT we will discuss in
the following sections, Zorn’s Lemma can be enriched in a similar manner.
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Since our main concerns are the principles in systems of finite character, we
will not state the enriched form of Zorn’s Lemma nor prove its equivalence
here. (One may look at [3] for a proof.) However, the proof can be made
using a similar strategy as we did for Theorem 2.3.

Now we turn to an application of TT. As promised in the beginning of
this section, we will prove the following important result in Linear Algebra.

Proposition 2.4. Assume TT. Then every vector space has a basis.

Proof. Let V be any vector space, and A be the system on V consisting of
all linearly independent subsets of V . We show that A has finite character
to invoke TT and obtain a maximal linearly independent subset of V . Then
that subset will turn out to be a basis of V .

We show that A has finite character, i.e. for all A ⊆ V , A ∈ A if and
only if all finite subsets of A are in A. ‘only if’: If A ∈ A, then any finite
subset of A is also linearly independent and hence in A. For ‘if’, we prove
the contrapositive. Suppose A /∈ A. Then there exist linearly dependent
vectors v1, . . . , vn ∈ A, with n ∈ Z≥2. So the finite subset {v1, . . . , vn} of A
is not in A, as desired. Thus A has finite character.

By the Tukey-Teichmüller Theorem, we obtain a maximal linearly inde-
pendent subset B of V . To establish that B is a basis of V , we show that B
generates V . Suppose B doesn’t, i.e. there is v ∈ V which cannot be written
as a linear combination of B. It means that v is linearly independent of B,
and contradicts B being maximal in A. Therefore B must generate V and
so B is a basis of V .

We conclude that every vector space has a basis.

3 Boolean Algebra and PIT

In this section we review Boolean Algebra and discuss the Boolean Prime
Ideal Theorem and the Ultrafilter Lemma.

3.1 Boolean Algebra and PIT

Before we discuss about the Boolean Prime Ideal Theorem, we review some
basic aspects about Boolean Algebra. First we define Boolean Algebra.

Definition 3.1. A Boolean Algebra is a structure (B,∨,∧,′ , 0, 1), where B
is a set, ∨,∧ are binary operations on B, ′ is an unary operation on B and
0, 1 ∈ B, satisfying

• a ∨ a = a and a ∧ a = a, (idempotency)
• a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c, (associativity)
• a ∨ b = b ∨ a and a ∧ b = b ∧ a, (commutativity)
• a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a, (absorption)
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• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
(distributivity)

• 0 ∨ a = a and 0 ∧ a = a, (bottom boundary)
• 1 ∨ a = 1 and 1 ∧ a = a, (top boundary)
• a ∨ a′ = 1 and a ∧ a′ = 0, (complements)

for all a, b, c ∈ B.

Example 3.2. A typical example of Boolean algebra is the Powerset alge-
bra. For any set X, we the structure (P(X),∪,∩, (−)c, ∅, X) is a Boolean
algebra that we refer to as the Powerset algebra on X. Notice that the
unary operator (−)c is defined as Y c = X − Y for all Y ∈ P(X). Also in
this paper, we will encounter Powerset algebra; at the end of this section
when we derive the Axiom of Choice for Finite Sets from the Ultrafilter
Lemma, and in Section 4 when we prove that UL implies the Restricted
Tukey-Teichmüller Theorem.

To be able to formulate the statement of Boolean Prime Ideal Theorem,
we need the definition of Boolean ideal and Boolean prime ideal. As the
name suggests, ideals of Boolean Algebra are similar to ideals of rings. In
the following we will also define the finite join property for subsets of Boolean
Algebras; this concept will play an important role when we later prove the
Prime Ideal Theorem using other non-constructive principles.

Definition 3.3. An ideal of a Boolean Algebra B is a subset J of B such
that

(1) 0 ∈ J and 1 /∈ J ,
(2) if a, b ∈ J then a ∨ b ∈ J ,
(3) if a ∈ J and b ∈ B then a ∧ b ∈ J .

And an ideal J that satisfies

• if a, b ∈ B with a ∧ b ∈ J then a ∈ J or b ∈ J

is called a prime ideal.
We say that a subset J has the finite join property if a1 ∨ · · · ∨ an 6= 1

for all a1, . . . , an ∈ J .

In the following lemma we state several conditions about ideals and prime
ideals that are useful.

Lemma 3.4. Let J be a subset of a Boolean Algebra B. Then the following
hold.

(a) Suppose that J is an ideal. Then J has the finite join property.
(b) Suppose that J is a prime ideal. Then a ∈ J or a′ ∈ J for all a ∈ J .
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(c) J satisfies the finite join property and either a ∈ J or a′ ∈ J for all
a ∈ B if and only if J is a prime ideal.

Proof. First we prove (a). Let b1, . . . , bn be finitely many elements of I.
Since I is an ideal, b1 ∨ · · · ∨ bn ∈ I, so that b1 ∨ · · · ∨ bn 6= 1 as desired.

Now we prove (b). Let a ∈ B. Then a ∧ a′ = 0 ∈ I, because I is an
ideal. Since I is prime, a ∈ I or a′ ∈ I, as desired.

Lastly we prove (c). ‘if’: By (a) and (b), J has finite join property and
a ∈ J or a′ ∈ J for all a ∈ J , as desired. ‘only if’: Suppose, for contradiction.
That there are a, b ∈ B such that a ∧ b ∈ J but a /∈ J and b /∈ J . Then, by
the hypothesis, a′ ∈ J . Thus (a ∧ b) ∨ a′ ∨ b′ = ((a ∨ a′) ∧ (b ∨ a′)) ∨ b′ =
(1∧(b∨a′))∨b′ = (1∨b′)∧(b∨a′∨b′) = 1∧(1∨a′) = 1∧1 = 1, contradicting
the finite join property. Therefore J must be a prime ideal.

Now we state the Boolean Prime Ideal Theorem. Thereafter we will
see that PIT is indeed a theorem in ZFC; the Tukey-Teichmüller theorem
implies it.

Boolean Prime Ideal Theorem (PIT). Every ideal of a Boolean algebra
is included in a prime ideal.

To prove PIT using a non-constructive principle for systems of finite
character, e.g. the TT or the RTT to come later, it is useful to formulate
the following lemma.

Lemma 3.5 (extension property for finite join property). Let B be a Boolean
algebra and J ⊆ B. If J has the finite join property and x ∈ B, then J ∪{x}
or J ∪ {x′} has the finite join property.

Proof. Suppose, for contradiction, that neither J ∪{x} nor J ∪{x′} has the
finite join property. Since J has finite join property, there exist a1, . . . , an ∈
J and b1, . . . , bk ∈ J such that

a1 ∨ · · · ∨ an ∨ x = 1 and b1 ∨ · · · ∨ bm ∨ x′ = 1.

If we put
z = a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bm,

then z∨x = 1 and z∨x′ = 1 hold. Therefore 1 = 1∧1 = (z∨x)∧ (z∨x′) =
(z ∧ z) ∨ (z ∧ x′) ∨ (x ∧ z) ∨ (x ∧ x′) = z ∨ 0 = z; this is impossible because
z 6= 1 by the finite join property of J .

We conclude that either J ∪ {x} or J ∪ {x′} must have the finite join
property.

Remark 3.6. We anticipate that (a slight generalization of) this extension
property will be the (only) extra hypothesis to add to the statement of the
Tukey-Teichmüller Theorem when we formulate the Restricted TT. We will
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also weaken the conlusion of TT slightly, but such that it is still strong
enough to imply the conclusion of PIT. Therefore, once we formulated the
RTT, we will be able to replace the use of TT in the following proof by RTT.

Theorem 3.7. The Tukey-Teichmüller Theorem implies PIT.

Proof. Let I be an ideal of a Boolean Algebra B. Define

J = {J ⊆ B : J has the finite join property}.

We prove that the system J on B has finite character, i.e. for all J ⊆ B,
J ∈ J if and only if all finite subsets of J are in J . ‘only if’: Suppose J ∈ J .
Then J and hence all subsets of J have the finite join property. So all finite
subsets of J are in J . For ‘if’, we prove the contrapositive. Suppose J /∈ J .
Then J does not have the finite join property. This means that there exist
b1, . . . , bn ∈ J such that b1 ∨ · · · ∨ bn = 1. Thus {b1, . . . , bn} ∈ J , as desired.
Therefore J has finite character.

Note that by Lemma 3.4(a), I has finite join property and hence I ∈ J .
Thus by TT, there exists M ∈ J such that I ⊆ M and M is maximal in J .
In particular, M has finite join property.

Let x ∈ B. By Lemma 3.5, M ∪ {x} or M ∪ {x′} has the finite join
property and hence in J . So by the maximality of M in J , x ∈ M or
x′ ∈ M . By Lemma 3.4(c) we find that M is a desired prime ideal.

We conclude that PIT follows from the Tukey-Teichmüller Theorem.

Remark 3.8. Theorem 3.7 also says, since TT and the Axiom of Choice
are equivalent, that AC implies PIT. This implications is strict, i.e. PIT
does not imply AC in ZF; cf. [4].

3.2 Ultrafilter Lemma and its applications

We can dualize everything we have written about ideals. Then we obtain
the notion of filters and ultrafilters, the dual concepts of ideals and prime
ideals, as well as the Ultrafilter Lemma, which is the dual statement of the
Prime Ideal Theorem.

Definition 3.9. A filter of a Boolean Algebra B is a subset J of B such
that

(1) 0 /∈ J and 1 ∈ J ,
(2) if a, b ∈ J then a ∧ b ∈ J ,
(3) if a ∈ J and b ∈ B then a ∨ b ∈ J .

And a filter J that satisfies

• if a ∨ b ∈ J then a ∈ J or b ∈ J
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is called an ultrafilter.
We say that a subset J has the finite meet property if a1 ∧ · · · ∧ an 6= 0

for all a1, . . . , an ∈ J .

In the following we will present the properties about filters and ultrafil-
ters, analogous to those of ideals and prime ideals that we have discussed.
Since the properties have already been proved for the ideal case, for the filter
case we shall not need to prove them again from the scratch, thanks to the
well-known duality principle:

Proposition 3.10 (Duality Principle). Let Φ be a statement about Boolean
algebras, involving the symbols ∨,∧,′ , 0, 1. Define the dual statement Φd of
Φ by interchanging ∨ with ∧ and 0 with 1 in Φ. If Φ holds for all Boolean
algebras, then Φd is also true for all Boolean algebras.

Proof. See, for instance, [3].

Lemma 3.11. Let J be a subset of a Boolean Algebra B. Then the following
hold.

(a) Suppose that J is a filter. Then J has the finite meet property.
(b) Suppose that J is an ultrafilter. Then a ∈ J or a′ ∈ J for all a ∈ J .
(c) J satisfies the finite meet property and either a ∈ J or a′ ∈ J for all

a ∈ B if and only if J is an ultrafilter.

Proof. These statements is dual to those of Lemma 3.4. Therefore, by the
duality principle, (a), (b) and (c) are true.

Ultrafilter Lemma (UL). Every filter of a Boolean algebra is included in
an ultrafilter.

Lemma 3.12. PIT and the Ultrafilter Lemma are equivalent.

Proof. This follows from the duality principle and the fact that PIT is dual
to UL.

In other words, Ultrafilter Lemma holds in settings where PIT holds,
and vice versa. In section 4, we will make use of this fact; we will show that
the Ultrafilter Lemma proves the Restricted Tukey-Teichmüller Theorem
(RTT) to establish PIT⇒RTT.

Before we discuss the Axiom of Choice for Finite Sets, we first prove two
lemmas regarding special properties of filters and ultrafilters in a Powerset
algebra. These properties will be convenient when we need to apply the
Ultrafilter Lemma for a Powerset algebra.

The first lemma says that every collection with the finite intersection
property, i.e. the finite meet property for Powerset algebras, is included in a
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filter. This allows one to invoke the Ultrafilter Lemma on a non-empty col-
lection with the finite intersection property, without requiring the collection
to be a filter.

Lemma 3.13. Let X be a set and A ⊆ P(X) a non-empty collection with
the finite intersection property. Then there exists a filter Â of P(X) such
that A ⊆ Â.

Proof. Define
Â = {A ∪K : A ∈ A,K ∈ P(X)}.

Then clearly A ⊆ Â because A = A ∪ ∅ ∈ Â for all A ∈ A. It remains to
verify that Â satisfies (1), (2) and (3) of the filter definition in 3.9.

First we verify (1). Note that ∅ /∈ A because A has finite intersection
property. Therefore each element A∪K ∈ Â (where A ∈ A and K ∈ P(X))
is non-empty. Now, since A is non-empty, choose A ∈ A arbitrary. Then
X = A ∪X ∈ Â. We conclude that ∅ /∈ Â and X ∈ Â, as desired.

For (2), let A ∪K, B ∪ L ∈ Â where A,B ∈ A and K, L ∈ P(X). Then
as desired,

(A ∪K) ∩ (B ∪ L) = (A ∩B) ∪ (A ∩ Y ) ∪ (X ∩B) ∪ (X ∩ Y ) ∈ Â

because (A ∩B) ∈ A and (A ∩ Y ) ∪ (X ∩B) ∪ (X ∩ Y ) ∈ P(X).
For (3), let A ∪K ∈ Â and L ∈ P(X). Then as desired,

(A ∪K) ∪ L = A ∪ (K ∪ L) ∈ Â,

because A ∈ A and (K ∪ L) ∈ P(X).
This proves that Â is a filter of P(X) with A ⊆ Â.

The second lemma describes a very useful property of an ultrafilter in a
Powerset algebra.

Lemma 3.14. Let U be an ultrafilter of the Powerset algebra on a set X.
If X1, . . . , Xn ⊆ X are pairwise disjoint and X = X1 ∪ · · · ∪Xn, then there
is a unique 1 ≤ k ≤ n such that Xk ∈ U .

Proof. The existence part is proved as follows. Suppose that for all 1 ≤ k ≤
n, Xk /∈ U . Then Xc

1, . . . , X
c
n ∈ U . But Xc

1 ∩ · · · ∩Xc
n = (X2 ∪ · · · ∪Xn) ∩

· · · ∩ (X1 ∪ · · · ∪ Xn−1) = ∅, contradicting Lemma 3.11(a) that U has the
finite intersection(meet) property. This proves the existence part.

The uniqueness part is easy; if k, k′ (1 ≤ k, k′ ≤ n) are such that k 6= k′

but Xk, Xk′ ∈ U , then ∅ = Xk ∩Xk′ ∈ U , which is impossible because U has
the finite intersection property and so ∅ /∈ U .

Now, using the two results just obtained, we will prove that the Ultra-
filter Lemma implies the Axiom of Choice for Finite Sets. This result of the
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Ultrafilter Lemma will again be referred to when we derive the Restricted
Tukey-Teichmüller Theorem from PIT in Section 4.

Axiom of Choice for Finite Sets. Let Z = {Zt : t ∈ T} be a collection of
non-empty finite sets indexed by a set T . Then there exists a choice function
for Z, i.e. a function φ : T →

⋃
Z s.t. φ(t) ∈ Zt for all t ∈ T .

Theorem 3.15. The Ultrafilter Lemma implies the Axiom of Choice for
Finite Sets.

Proof. Let Z = {Zt : t ∈ T} be a collection of non-empty finite sets. A
partial choice function for Z is a function φ : S →

⋃
Z with S ⊆ T and

φ(s) ∈ Zs for all s ∈ S. Note that for all finite subset F of T , there is
a partial choice function whose domain is F ; we can construct such finite
choice functions by induction on the cardinality of F . Define E as the set
of all partial choice functions for Z. And for each F b T , define

EF = {φ ∈ E : F ⊆ dom(φ)}.

Note (a) that EF 6= ∅ for all F b T because there is a φ ∈ EF with
dom(φ) = F .

We also claim (b) that for F,G b T , EF∪G ⊆ EF ∩ EG. Let φ ∈ EF∪G.
Then F ∪ G ⊆ dom(φ). So F ⊆ dom(φ) and G ⊆ dom(φ) hold. Therefore
φ ∈ EF ∩ EG, as desired.

From (a) and (b) it follows that the collection non-empty A := {EF :
F b T} has the finite intersection property, because if F1, . . . , Fn b T then
EF1 ∩ · · · ∩ EFn ⊇ EF1∪···∪Fn 6= ∅. So, by Lemma 3.13 and the Ultrafilter
Lemma, we obtain an ultrafilter U of P(E) such that A ⊆ U .

Let t ∈ T and write Zt = {z1, . . . , zn}. Then E{t} = E{t},1 ∪ · · · ∪E{t},n,
where for 1 ≤ k ≤ n,

E{t},k := {φ ∈ E{t} : φ(t) = zk}.

We have that E{t},k ∩ E{t},k′ = ∅ for 1 ≤ k < k′ ≤ n, because if φ ∈ E{t},k
then φ(t) = zk 6= zk′ so φ /∈ E{t},k′ . By Lemma 3.14, there is a unique
integer k(t), 1 ≤ k(t) ≤ n, such that E{t},k(t) ∈ U . Finally, define the choice
function Φ : T →

⋃
Z by Φ(t) = zk(t), as desired.

4 Restricted Tukey-Teichmüller Theorem

In this section we discuss the restriction of the Tukey-Teichmüller Theorem,
RTT, given by Hodel [1]. As anticipated before, the restriction will turn out
to be equivalent to the Boolean Prime Ideal theorem (PIT).

We will first state RTT and see what it can do, including a proof that
RTT implies Alexander’s Subbase Theorem, an important result in Topol-
ogy. Then the two variations RTT+ and RTT++ of RTT will be formulated,
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which we will primarily use to bridge the equivalence of RTT and PIT. Fi-
nally, several selection lemmas due to Cowen, Engeler and Rado will be
treated as applications of RTT++.

4.1 Statement of RTT

Restricted Tukey-Teichmüller Theorem (RTT). Let X be a set, A a
(non-empty) system of finite character on X, and let ′ be an unary operation
on X. Assume that

(E) A has the extension property with respect to ′, i.e. for all A ∈ A and
all x ∈ X, A ∪ {x} ∈ A or A ∪ {x′} ∈ A.

Then

(I) there exists B ∈ A such that for all x ∈ X, x ∈ B or x′ ∈ B,
(II) for all A ∈ A, there exists B ∈ A such that A ⊆ B and for all x ∈ X,

x ∈ B or x′ ∈ B.

(I) and (II) are, respectively, the conclusions of the plain form and the
enriched form of RTT. For the enriched form of RTT, we do not require the
system A to be non-empty.

Like in the case of the original Tukey-Teichmüller Theorem, the two
forms are equivalent in ZF. Note that the strategy used for the proof of the
following theorem is the same as that of Theorem 2.3.

Theorem 4.1. The plain form and the enriched form of RTT are equivalent.

Proof. If the enriched form holds, the plain version is clearly true, because
we may invoke the enriched form on any A ∈ A.

Now we prove the enriched form using the plain form. Let X, A and
A be as in the statement. Note that this time, deviating from the case of
Theorem 2.3, A additionally satisfies (E). Define

B = {B ⊆ X : B ∪A ∈ A}.

Note that B contains all supersets A′ ∈ A of A because A′ ∪A = A′ ∈ A.
We prove that the system B on X has finite character, i.e. for all B ⊆ X,

X ∈ B if and only if all finite subsets of B are in B. (This part is exactly
the same as in the proof of Theorem 2.3.) ‘only if’: Suppose B ∈ B. Let F
be a finite subset of B. Then B ∪ A ∈ A. Since F ∪ A ⊆ B ∪ A and so all
finite subsets of F ∪A are finite subsets of B ∪A, by the finite character of
A, we conclude that F ∪A ∈ A. So F ∈ B, as desired. For ‘if’, we prove the
contrapositive. Suppose B /∈ B. We look for a finite subset of B that is not
in B. Then B ∪A /∈ A. Thus there is a finite subset B′ ∪A′ of B ∪A, where
B′ b B and A′ b A, such that B′ ∪A′ /∈ A. Since B′ ∪A′ b B′ ∪A, by the
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finite character of A, we also have that B′ ∪A /∈ A. Therefore B′ /∈ A; this
proves ‘if’ because B′ b B.

Then we check that B has the extension property, i.e. for all B ∈ B
and all x ∈ X, B ∪ {x} ∈ B or B ∪ {x′} ∈ B. Let x ∈ X and B ∈ B.
Since A has the extension property, we know that (B ∪ A) ∪ {x} ∈ A or
(B∪A)∪{x′} ∈ A. In other words, (B∪{x})∪A ∈ A or (B∪{x′})∪A ∈ A.
This proves that B ∪ {x} ∈ B or B ∪ {x′} ∈ B, as desired.

We note that A ∈ B 6= ∅ because A ∪ A = A ∈ A. Thus we may apply
the plain RTT to B and obtain an element M ∈ B such that x ∈ M or
x′ ∈ M for all x ∈ X. Since A ∪ M ∈ A, A ⊆ A ∪ M and x ∈ A ∪ M
or x′ ∈ A ∪M for all x ∈ X, we have that A ∪M is a desired element we
sought.

We conclude that the plain form indeed implies the enriched form.

Recall the proof of Theorem 3.7. When we derived PIT using TT, we de-
duced from the maximality of the element M obtained by TT, the property
from RTT that x ∈ M or x′ ∈ M for all x ∈ B. In other words, for de-
riving PIT, the maximality property of M is unnecessarily strong while the
property from RTT is strong enough, as anticipated in Remark 3.6. Since
the finite join property has the extension property (Lemma 3.5), we could
indeed apply RTT instead of TT. This proves that also RTT implies PIT;
in the following we will work this out.

Theorem 4.2. The Restricted Tukey-Teichmüller Theorem implies the Boolean
Prime Ideal Theorem.

Proof. Let I be an ideal of a Boolean Algebra B. Define

J = {J ⊆ B : J has the finite join property}.

In the proof of Theorem 3.7, we have seen that J has finite character
and I ∈ J . And by Lemma 3.5, J has the extension property w.r.t. the
operation ′ on B. So we may apply RTT on J , and obtain M ∈ J such
that I ⊆ M and x ∈ M or x′ ∈ M for all x ∈ B. By Lemma 3.4(c) we find
that M is a desired prime ideal.

We conclude that PIT follows from the Restricted Tukey-Teichmüller
Theorem.

Then we turn to the study of Alexander’s Subbase Theorem.

Alexander’s Subbase Theorem. Let X be a topological space and S be
a subbase for X such that every cover C ⊆ S has a finite subcover. Then X
is compact.

To exhibit the relation of this principle with RTT, we introduce the
terminology of finite inadequacy.
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Definition 4.3. If X is a topological space, we say that a collection W ⊆
P(X) is finitely inadequate if no finite subcollection of W covers X.

The key of the proof that RTT implies Alexander’s Subbase Theorem is
that the property of finite inadequacy satisfies the conditions (I) and (II) in
the hypothesis of RTT. The following lemma explains this in detail.

Lemma 4.4. Let A be the system on P(X) consisting of all finitely inad-
equate systems on X. Then

(a) A has finite character,
(b) A has the extension property w.r.t. the complement operation (−)c :=

X − (−).

Proof. First we prove (a) that for all A ⊆ P(X), A ∈ A if and only if all
finite subcollections of A are in A . ‘if’: Suppose that A ∈ A . In other
words, no finite subcollection of A covers X. Therefore, if F b A, then no
finite subcollection of F covers X and hence F ∈ A , as desired. For ‘only
if’, we prove the contrapositive. Suppose that A /∈ A . Then there is a finite
subcollection F of A that covers X. Since F is a finite subcollection of itself
that covers X, F is not finitely inadequate and hence in A . Thus not every
finite subcollection of A is in A , as desired.

For (b), let A ∈ A and Y ∈ P(X). We prove that A ∪ {Y } ∈ A
or A ∪ {Y c} ∈ A . Suppose, for contradiction, that A ∪ {Y } /∈ A and
A ∪ {Y c} /∈ A . This means, since A does not have a subcollection that
covers X, that there are F ,G b A such that F∪{Y } covers X and F∪{Y c}
covers X. Thus (F ∪ G) ∪ {Y } covers X and (F ∪ G) ∪ {Y c} covers X. In
other words,

⋃
(F∪G)∪Y = X and

⋃
(F∪G)∪Y c = X. Since F∪G is finite

and so cannot cover X, we have that (
⋃

(F ∪ G))c 6= ∅, (
⋃

(F ∪ G))c ⊆ Y
and (

⋃
(F ∪ G))c ⊆ Y c, which gives a contradiction as desired.

Remark 4.5. Note that the part (b) of the proof, which proves the extension
property for finite inadequacy, is very similar to the proof of Lemma 3.5,
which proves the extension property for finite join property. The explanation
for this is that the property of finite inadequacy, which requires A1 ∪ · · · ∪
An 6= X for A1, . . . , An ∈ Y , and the operation c are respectively analogous
to the finite meet property, which requires a1∨· · ·∨an 6= 1 for a1, . . . , an ∈ B,
and the operation ′. This analogy becomes clearer if we recall that P(X)
can be regarded as a Boolean algebra with ∪ as the meet operation and c

as the complement operation.

Now we give the proof that the Alexander’s Subbase Theorem follows
from the Restricted Tukey-Teichmüller Theorem.
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Lemma 4.6. RTT implies Alexander’s Subbase Theorem.

Proof. Let X be a topological space and S be a subbase for X such that
every cover included in S has a finite subcover. Suppose, for contradiction,
that X is not compact. Then there is an open cover W of X such that
there is no finite subcollection of W covers X. In other words, W is finitely
inadequate. Define

B = {B : B ⊆ W for W ∈ W and B = S1 ∩ · · · ∩ Sn for S1, . . . , Sn ∈ S}.

To prove that B covers X, we show that for each W ∈ W there exists a
subcollection BW of B such that W ⊆

⋃
BW . For each w ∈ W , there exist

S1, . . . , Sn ∈ S such that w ∈ S1 ∩ · · · ∩ Sn ⊆ W , because W is open and
S1 ∩ · · · ∩ Sn is a member of the basis generated by the subbase S. Thus,
put BW = {B = S1 ∩ · · · ∩ Sn : n ∈ N ∧ ∃w ∈ W (w ∈ B) ∧B ⊆ W}; this is
a subcollection of B with W ⊆

⋃
BW , as desired. Now, since W covers X,

also B ⊇
⋃

W∈W BW , which covers each W ∈ W, covers X.
Now we prove that B is finitely inadequate. Suppose it isn’t, i.e. there

is a finite subcollection B′ of B that covers X. Since B′ is finite, in plain ZF,
we can choose for each B ∈ B′ a WB ∈ W such that B ⊆ WB. Then the
finite subcollection {WB : B ∈ B′} of W covers X, contradicting W being
finitely inadequate. Therefore B must be finitely inadequate.

Let A be the system consisting of all finitely inadequate systems on X.
By Lemma 4.4, A satisfies the hypothesis of RTT. Since B ∈ A, by the
enriched RTT, there exists M∈ A such that

(1) B ⊆M,
(2) for all Y ⊆ X, Y ∈M or Y c ∈M.

We prove (3) that for each B ∈ B, there exists S ∈ M ∩ S such that
B ⊆ S. Let B ∈ B. Then B = S1 ∩ · · · ∩ Sn for S1, . . . , Sn ∈ S. We
show that there is k, 1 ≤ k ≤ n, such that Sk ∈ M. Suppose there isn’t,
i.e. S1, . . . , Sn /∈ M. From (2) it follows that Sc

1, . . . , S
c
n ∈ M. Then

X = B ∪Bc = B ∪ (S1 ∩ · · · ∩Sn)c = B ∪ (Sc
1 ∪ · · · ∪Sc

n); in other words, the
finite subcollection {B,Sc

1, . . . , S
c
n} of M cover X, contradicting M being

finitely inadequate. So there exists k, 1 ≤ k ≤ n, such that Sk ∈ M. Since
Sk ∈ S as well, we have that Sk ∈M∩ S as desired.

By (3), M∩S ⊆ S covers X because B covers X. Then by the hypoth-
esis, there is a finite subcollection F of M ∩ S that covers X. This is a
contradiction because M ⊇ F is finitely inadequate. Therefore X must be
compact.

This proves that RTT implies Alexander’s Subbase Theorem.

Remark 4.7. This proof has slightly been optimized from the original proof
in [1]. In particular, we have not invoked the Axiom of Choice for Finite
Sets, while the original proof used it.
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4.2 Equivalence to PIT

In the previous section, we have seen that RTT implies PIT. In this sec-
tion we will finish the equivalence between the two. To bridge the inverse
implication, Hodel [1] introduces the two variations RTT+ and RTT++ of
RTT. RTT+ will be considered as a generalization of RTT, and RTT++

of RTT+. (But they will turn out to be still equivalent to RTT.) However,
apart from their role to connect PIT and RTT, each of them will have its own
characteristic applications; we will see these applications in the subsequent
section.

RTT+. Let X be a set, A a non-empty system of finite character on X and
Z = {Zt : t ∈ T} a collection of finite subsets of X indexed by some set T .
Assume that

(E+) for all A ∈ A and all t ∈ T , there is z ∈ Zt such that A ∪ {z} ∈ A.

Then there exists B ∈ A such that B ∩ Zt 6= ∅ for all t ∈ T .

We can see the collection Z as a generalization of the unary operation ′

from the statement of RTT, since one can put Z = {{x, x′} : x ∈ X}. So
RTT trivially follows from RTT+:

Lemma 4.8. RTT+ implies RTT.

Proof. Suppose that RTT+ holds. Assume the hypothesis of RTT. Then,
by putting Z = {{x, x′} : x ∈ X}, (E+) is satisfied. So, by RTT+ we obtain
a desired element B ∈ A; B satisfies the condition that for all x ∈ X, x ∈ B
or x′ ∈ B.

We further generalize the hypothesis of RTT+ and obtain the statement
of RTT++.

RTT++. Let X be a set, A a non-empty system of finite character on X
and Z = {Zt : t ∈ T} a collection of finite subsets of X indexed by some set
T . Assume that

(E++) for each finite subset {t1, . . . , tn} of T , there is a set
{z1, . . . , zn} ∈ A such that zk ∈ Ztk for 1 ≤ k ≤ n.

Then there exists B ∈ A such that B ∩ Zt 6= ∅ for all t ∈ T .

Note that also RTT+ and RTT++ can be enriched in the same manner as
we enriched RTT and other non-constructive principles. One can also prove
the equivalence between the enriched form and the plain form for RTT+ and
RTT++, analogously to Theorem 4.1.

Now, the proof of the following lemma will exhibit how (E++) generalizes
(E+).
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Lemma 4.9. RTT++ implies RTT+.

Proof. Suppose that RTT++ holds. Assume the hypothesis of RTT+. We
check that (E++) is satisfied. Let {t1, . . . , tn} be a finite subset of T . Since
A is non-empty and has finite character, ∅ ∈ A. So, by (E+), there exists
z1 ∈ Zt1 s.t. {z1} = ∅ ∪ {z1} ∈ A. In the same manner we find z2 ∈
Zt2 , . . . , zn ∈ Ztn s.t. {z1, . . . , zn} ∈ A. Therefore (E++) is satisfied and
we may invoke RTT( + +) to obtain a desired element B ∈ A satisfying
B ∩ Zt 6= ∅ for all t ∈ T .

Then it remains to prove that PIT implies RTT++. As announced before,
we will prove that the Ultrafilter Lemma implies RTT, which does the same
because PIT and UL are equivalent.

Theorem 4.10. The Ultrafilter Lemma implies RTT++.

Proof. We prove RTT++ using the Ultrafilter Lemma.
Let A be a non-empty system of finite character on a set X and Z =

{Zt : t ∈ T} a collection of finite subsets of X indexed by a set T that
satisfies (E++). Define

H =
∏
t∈T

Zt

and choose g ∈ H using the Axiom of Choice for Finite Sets, which by
Theorem 3.15 follows from the Ultrafilter Lemma. For each F b T , define

HF = {f ∈ H : f(F ) ∈ A}

and let
H = {HF : F b T}.

First we prove (a) that HF 6= ∅ for all F b T . By (E++) there exists a
function φ′ on F such that φ′(t) ∈ Zt for all t ∈ F and φ′(F ) ∈ A. Now,
define the function φ on T by

φ(t) =

{
φ′(t) if t ∈ F ,

g(t) otherwise.

Then φ ∈ H and φ(F ) = φ′(F ) ∈ A. So φ ∈ HF , as desired.
Then we prove (b) that HF∪G ⊆ HF ∩ HG for all F,G b T . Let φ ∈

HF∪G. Then φ(F ∪ G) ∈ A. Since φ(F ), φ(G) b φ(F ∪ G), by the finite
character of A, φ(F ), φ(G) ∈ A. Therefore φ ∈ HF ∩HG, as desired.

From (a) and (b) it follows that the non-empty collectionH has the finite
intersection property, because if F1, . . . , Fn b T then HF1 ∩ · · · ∩ HFn ⊇
HF1∪···∪Fn 6= ∅. So by Lemma 3.13 and the Ultrafilter Lemma, we obtain an
ultrafilter U of P(H) such that H ⊆ U .
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We claim (c) that for each t ∈ T , there exists a unique zt ∈ Zt such that
Ht ∈ U , where

Ht := {f ∈ H : f(t) = zt}.

Let t ∈ T and write Zt = {z1, . . . , zn}. For each integer k, 1 ≤ k ≤ n, define

Hk = {f ∈ H : f(t) = zk}.

Then clearly H1 ∪ · · · ∪ Hn = H. We also have that Hk ∩ Hk′ = ∅ for
1 ≤ k < k′ ≤ n, because if f ∈ Hk then f(t) = zk 6= zk′ and so φ /∈ Hk′ .
By Lemma 3.14, there is a unique integer k(t), 1 ≤ k(t) ≤ n, such that
Hk(t) ∈ U . Putting zt = zk(t), we have that Ht = Hk(t) ∈ U and that (c) is
proved.

Now, define
B = {zt : t ∈ T}.

Then B ∩ Zt 6= ∅ for all t ∈ T .
To prove that B ∈ A, we show that all finite subsets of B are in A.

Let {zt1 , . . . , ztn} be a finite subset of B and write F = {t1, . . . , tn}. Since
F b T , HF ∈ H ⊆ U . And by (c), Ht1 , . . . ,Htn ∈ U . Thus, by the finite
intersection property of U , there exists f ∈ H such that

f ∈ HF ∩Ht1 ∩ · · · ∩Htn .

Since f(tk) = ztk for all 1 ≤ k ≤ n and f ∈ HF , we have that

{zt1 , . . . , ztn} = f(F ) ∈ A,

as desired. By the finite character of A, we conclude that B ∈ A.
We found a desired element B ∈ A such that B ∩ Zt 6= ∅ for all t ∈ T .

This proves that the Ultrafilter Lemma implies RTT++.

Corollary 4.11. The following are equivalent.

(1) RTT
(2) RTT+

(3) RTT++

(4) PIT

Proof. We have just seen in Theorem 4.10 that UL implies RTT++. Since
PIT and UL are equivalent by Lemma 3.12, we have that (4)⇒(3). (3)⇒(2)
is Lemma 4.9, (2)⇒(1) is Lemma 4.8 and (1)⇒(4) is Theorem 4.2. Therefore
(1)⇔(2)⇔(3)⇔(4).
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4.3 Applications of RTT++

Now we turn to the applications of RTT++. We will observe various prin-
ciples that are naturally equivalent to or easily follow from RTT++. These
are all introduced in Hodel’s original paper [1]. We will provide detailed
proofs for the equivalences and the implications.

The first application we will consider is the Cowen-Engeler Lemma:

Cowen-Engeler Lemma. Let T and X be sets. Let E be a collection of
functions from subsets of T into X such that
(a) for all t ∈ T , the set Xt = {φ(t) : φ ∈ E ∧ t ∈ dom(φ)} is finite,
(b) for all F b T , there is a function φ ∈ E whose domain is F ,
(c) E has finite character (that is, a function φ from a subset T into X is
in E if and only if for every finite F ⊂ dom(φ), φ|F is in E.
Then T is the domain of some φ ∈ E.

We will give a direct proof that the Cowen-Engeler Lemma is equivalent
to RTT++.

Lemma 4.12. RTT++ implies the Cowen-Engeler Lemma.

Proof. We prove that Cowen-Engeler Lemma follows from RTT++. Let T ,
X and E as in the hypothesis of the Cowen-Engeler Lemma. For each t ∈ T ,
define Zt = {(t, x) : x ∈ Xt}.

Now, to apply RTT++, we check (E++). Let F = {t1, . . . , tn} ⊆ T . By
(b), there is a function φ ∈ E whose domain is F. We now have that

φ = {(t1, φ(t1)), . . . , (tn, φ(tn))} ∈ E and (tk, φ(tk)) ∈ Ztk for 1 ≤ k ≤ n.

This proves that (E++) is satisfied. Now we obtain, by RTT+, a function
ϕ ∈ E such that ϕ∩Zt 6= ∅. So the function ϕ is defined on all of T , as desired.
This proves that the Cowen-Engeler Lemma follows from RTT++.

Lemma 4.13. The Cowen-Engeler Lemma implies RTT++

Proof. We prove that the Cowen-Engeler Lemma implies RTT++. Let A be
a non-empty system on X with finite character and let {Zt : t ∈ T} be a
collection of finite subsets of X such that the condition (E++) is satisfied.
Define

E = {φ : φ is a function with dom(φ) ⊆ T, φ(t) ∈ Zt for all t ∈ dom(φ)
and for all F b dom(φ), {φ(t) : t ∈ F} ∈ A}.

First we check (a) that E has finite character. Let S ⊆ T and φ : S → X.
If φ ∈ E , then by the definition of E , φ|F ∈ E for all F b S. Now, suppose
that φ is such that φ|F ∈ E for all F b S. Then (1) dom(φ) = S ⊆ T ,
(2) if t ∈ dom(φ) then φ(t) = φ|{t}(t) ∈ Zt and (3) for every F b dom(φ),
{φ(t) : t ∈ F} ∈ A. Therfore φ ∈ E . So (a) is satisfied.
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Now we check (b). Let F b T . Then by (E++), there is a function
φ : F → X s.t. φ(t) ∈ Zt for all t ∈ F . And if F ′ b F then φ(F ′) ∈ A
because φ(F ′) b φ(F ) ∈ A and A has finite character. So φ ∈ E , as desired.

Lastly, we check (c). Let t ∈ T . Note that Xt = {φ(t) : φ ∈ E ∧ t ∈
dom(φ)} ⊆ Zt. Since Zt is finite, Xt is finite.

Now the hypothesis of the Cowen-Engeler Lemma is satisfied, so we
obtain a function φ ∈ E with domain T . Let B = {φ(t) : t ∈ T}. Clearly
B ∩ Zt 6= ∅. To prove B ∈ A, we use the finite character of A. Let B′ b B.
Then B′ = φ(F ) for some F b T . Now, B′ = φ(F ) ∈ A holds because
φ ∈ E . So B ∈ A. B is a desired element to conclude RTT++.

Corollary 4.14. RTT++ is equivalent to the Cowen-Engeler Lemma.

Proof. This is proved by Lemma 4.12 and 4.13.

Now we look at another application of RTT++.

Generalized Consistency Theorem. Let {Xt : t ∈ T} be a collection
of finite non-empty sets, and let E be a collection of functions φ such that
dom(φ) is a finite subset of T and φ(t) ∈ Xt for all t ∈ dom(φ), i.e. φ is a
finite choice function for {Xt : t ∈ T}. Assume that

(1) for each F b T , there exists φ ∈ E such that dom(φ) = F ,
(2) if φ ∈ E and F ⊆ dom(φ) then φ|F ∈ E.

Then there is a choice function Φ for {Xt : t ∈ T} such that Φ|F ∈ E for all
F b T .

This statement is a generalized version of the Consistency Theorem from
[5]. In the original statement, the codomain of each function φ is {0, 1}.

For proving the Generalized Consistency Theorem with RTT++, we first
do the following lemma. It facilitates constructing a collection of finite
character from a given collection of functions.

Lemma 4.15. Let T and X be non-empty sets and let E be a collection of
functions from finite subsets of T into X such that for all φ ∈ E and all
F ⊆ dom(φ), φ|F ∈ E. Let

A = {φ : φ is a function from a subset of T into X

and for all finite F ⊆ dom(φ), φ|F ∈ E}.

Then

(1) E ⊆ A,
(2) if φ ∈ A and dom(φ) is finite, then φ ∈ E,
(3) A has finite character.
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Proof. First we check (1). Let φ ∈ E . Then φ is a function from a (even
finite) subset of T into X such that for all F b dom(φ), φ|F ∈ E . Thus
φ ∈ A.

Then we check (2). Let φ ∈ A such that dom(φ) is finite. Then for all
F ⊆ dom(φ), which is thus finite, φ|F ∈ E . Therefore φ ∈ E .

Now we check (3), i.e. for all function φ on a subset S of T into X,
φ ∈ A if and only if all finite subfunctions of φ are in A. ‘only if’: Suppose
φ ∈ A. Let F b S and consider the finite subfunction φ|F . If φ|G is a
finite subfunction of φ|F for G b F , then φ|G b φ, so φ|G ∈ A by the
finite character of A. Thus φ|F ∈ A, as desired. For ‘if’, we prove the
contrapositive. Suppose that φ /∈ A. Then, by definition of A, there exist
F b S such that φ|F /∈ E . Note that φ|F is a finite subfunction of itself
such that φ|F /∈ E . So, by definition of A, φ|F /∈ A. Thus there exists a
finite subfunction φ|F /∈ A of φ, as desired. This proves (3) that A has finite
character.

We conclude that (1), (2) and (3) hold.

Lemma 4.16. RTT++ implies the Generalized Consistency Theorem.

Proof. Define

B = {φ : φ is a function with dom(φ) ⊆ T , φ(t) ∈ Xt for all
t ∈ dom(φ), and for all finite F ⊆ dom(φ), φ|F ∈ E}.

Let A be constructed from E as in Lemma 4.15. We prove that A = B.
Clearly B ⊆ A. To show that A ⊆ B, let φ ∈ A. It suffices to prove
that φ(t) ∈ Xt for all t ∈ dom(φ). This is indeed the case, because φ(t) =
φ|{t}(t) ∈ Xt for all t ∈ dom(φ). This proves that A = B.

Now from Lemma 4.15 it follows that by (a), E ⊆ B, and by (c), B has
finite character.

For each t ∈ T , define

Zt = {(t, x) : x ∈ Xt}.

To apply RTT++ on B, we check (E++). Let F = {t1, . . . , tn} ⊆ T . By (1),
there exists φ ∈ E such that dom(φ) = F . Then, since E ⊆ B, φ ∈ B. And
since

φ = {(t1, φ(t1)), . . . , (tn, φ(tn))},

we have that (tk, φ(tk)) ∈ Ztk for each 1 ≤ k ≤ n, as desired by (E++).
By RTT++, we find Φ ∈ A such that Φ ∩ Zt 6= ∅ for all t ∈ T . This

means that dom(Φ) = T , as desired.
We conclude that the Generalized Consistency Theorem follows from

RTT++.

The converse implication also naturally holds. Here is a proof.
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Lemma 4.17. The Generalized Consistency Theorem implies RTT++.

Proof. Let A be a non-empty system with finite character on a set X and
Z = {Zt : t ∈ T} be a collection of finite subsets of X s.t. (E++) is satisfied.
Define

E = {φ : φ is a function on a finite subset of T

and φ(t) ∈ Zt for all t ∈ dom(φ)}.

From (E++) it follows that for each F b T , there is φ ∈ E such that
dom(φ) = F . And by definition of E , if φ ∈ E and F ⊆ dom(φ) then φ|F ∈ E .
So, by the Generalized Consistency Theorem, we obtain a choice function Φ
for Z such that Φ|F ∈ E for all F b T .

Let B = Φ(T ). We claim that B ∩Zt 6= ∅ for all t ∈ T . Let t ∈ T . Then
Φ(t) ∈ Φ(T ) ∩ Zt = B ∩ Zt, as desired. So B is a desired element that we
sought.

This proves that the Generalized Consistency Theorem implies RTT++.

Corollary 4.18. RTT++ and the Generalized Consistency Theorem are
equivalent.

Proof. This is exactly Lemma 4.16 and Lemma 4.17.

We consider the following Selection Lemma due to Rado [6], which easily
follows from the Generalized Consistency Theorem, as another application
of RTT++.

Rado’s Selection Lemma. Let {Xt : t ∈ T} be a collection of finite non-
empty sets. Assume that for each B b T , there is a choice function φB for
{Xt : t ∈ B} (the domain of φB is B and φ(t) ∈ Xt for all t ∈ T ). Then
there is a choice function Φ for {Xt : t ∈ B} such that for all F b T , there
is a B b T such that F ⊆ B and Φ|F = φB|F .

Proposition 4.19. The Generalized Consistency Theorem implies Rado’s
Selection Lemma.

Proof. Define
E = {φB|F : F ⊆ B,B b T}.

Since for all F b T , φF ∈ E , E satisfies (1) in the hypothesis of the Gener-
alized Consistency Theorem. And if φ ∈ E and F ⊆ dom(φ), then φ|F ∈ E
by definition of E . So E also satisfies (2).

By the Generalized Consistency Theorem, we obtain a choice function
Φ for {Xt : t ∈ T} such that φ|F ∈ E for all F b T . This means that
φ|F = φB|F for some B b T with F ⊆ B, as desired.

This proves that the Generalized Consistency Theorem implies Rado’s
Selection Lemma.
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Remark 4.20. Unlike the other two application, Cowen-Engeler Lemma
and Generalized Consistency Theorem, that we have seen, Rado’s Selection
Lemma is not equivalent to RTT++ and hence to PIT. This means that the
Selection Lemma does not imply PIT in ZF. See [7] for a proof of this fact.

5 Another restriction of TT

In this section we discuss another restriction of TT: the Finite Cutset Lemma.
This restriction is due to M. Erné [2]. In his paper, the equivalence between
PIT and the Finite Cutset Lemma is proved via Alexander’s Subbase Theo-
rem and another principle for systems of finite character named Intersection
Lemma. Instead of this approach, we will directly provide an equivalence
proof between the Finite Cutset Lemma and RTT+. Thereafter we will give
the one-direction proofs that the Alexander’s Subbase Theorem implies the
Intersection Lemma and the Intersection Lemma implies the Finite Cutset
Lemma. Since in Section 4 we already proved that RTT (and hence RTT+)
implies Alexander’s Subbase Theorem, this will establish the equivalences
between all of these principles.

5.1 Finite Cutset Lemma

First, we study the statement of the Finite Cutset Lemma. We will see how
the restriction is made from the Tukey-Teichmüller Theorem this time, and
discuss the difference to RTT. We begin by introducing some terminologies.

Definition 5.1. Given sets A and B we say that A and B intersect, or A
intersects B, if A ∩B 6= ∅.

Let A be a system on a set X. A set C ⊆ X is called a cutset of A if for
all A ∈ A there is an extension A′ ⊇ A in A such that A′ intersects C.

The best way to describe the relation between the Finite Cutset Lemma
and the Tukey-Teichmüller Theorem, I think, is to begin with the following
sibling principle of the Finite Cutset Lemma, which is equivalent to TT.

Cutset Lemma. Let A be a non-empty system of finite character on a set
X. Then there is M ∈ A such that M intersects every cutset of A.

Note that the hypothesis of the Cutset Lemma is the same as that of
the Tukey-Teichmüller Theorem. So if we have that the conclusions of the
Cutset Lemma and of the TT are equivalent, the two principles must be
equivalent. The next lemma will prove that the element returned by the
Cutset Lemma is indeed the maximal element of the system.
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Lemma 5.2. If a system A on a set X has finite character, then the fol-
lowing two conditions on M ∈ A are equivalent:

(1) M is maximal,
(2) M intersects every cutset of A.

Proof. First we prove that (1) implies (2). Suppose that M is maximal. Let
C ⊆ X be a cutset of A. Then there exist M ′ ∈ A with M ⊆ M ′ such
that C intersects M ′. But by the maximality of M , M ′ = M . Therefore C
intersects M , as desired. So M intersects every cutset of A.

For the part that (2) implies (1), we prove the contrapositive. Suppose
that M is not maximal. Then there exists M ′ ∈ A such that M ( M ′.

We claim that M c := X −M is a cutset of A. Let A ∈ A. Consider the
case A ⊆ M ′. Then M c intersects M ′ ⊇ A, because M ( M ′. Consider the
case A * M ′. Then there exists x ∈ A such that x /∈ M ′ and so x /∈ M .
Thus M c intersects A. This proves that M c is a cutset of A.

But M c is disjoint from M and so M c does not intersect M , as desired
to prove that not every cutset intersects M .

We conclude that (1) and (2) are equivalent.

Corollary 5.3. The Cutset Lemma and the Tukey-Teichmüller Theorem
are equivalent.

Proof. The hypotheses of the two principles are exactly the same. And
by Lemma 5.2, also the conclusions are equivalent. Therefore the Cutset
Lemma and the Tukey-Teichmüller Theorem must be equivalent.

We just add one word finite to the conclusion of the Cutset Lemma, and
obtain the Finite Cutset Lemma.

Finite Cutset Lemma. Let A be a non-empty system of finite character
on a set X. Then there is M ∈ A such that M intersects every finite cutset
of A.

Note that since we can view the TT and the Cutset Lemma as the same
thing by the previous discussions, we may indeed consider the Finite Cutset
Lemma as a restriction of the Tukey-Teichmüller Theorem. We observe that
the restriction is simpler than RTT in the sense that while RTT changed
both the hypothesis and the conclusion, the Finite Cutset Lemma only weak-
ened the conclusion. So the types of the two restrictions are different, and
for this reason one may worry that a direct equivalence proof between them
would be very tricky. But we will see that, fortunately, the conditions of the
Finite Cutset Lemma match those of RTT very well.

As announced before, RTT+ is the variation of RTT that we use to prove
the equivalence with the Finite Cutset Lemma. First we derive the Finite
Cutset Lemma from RTT+. The main of idea of this proof is that we can
take the collection of all finite cutsets as Z in the hypothesis of RTT+.
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Lemma 5.4. RTT+ implies the Finite Cutset Lemma.

Proof. Let X be a set and A be a non-empty system of finite character on
X. Define Z = {Z ⊆ X : Z is a finite cutset of A}.

We check that A satisfies the extension property (E+) w.r.t. Z. Let
A ∈ A and Z ∈ Z. Since Z is a cutset for A, there is A′ ⊇ A in A such
that A′ ∩Z 6= ∅. Let c ∈ A′ ∩Z ⊆ Z. We verify A∪ {c} ∈ A as follows. Let
F be a finite subset of A ∪ {c}. Then F is a finite subset of A′ ∈ A, so by
the finite character of A, F ∈ A. Thus, again by the finite character of A,
A ∪ {c} ∈ A, as desired. Therefore (E+) is satisfied.

Now, by RTT+ we acquire an element B ∈ A such that B ∩ Zt 6= ∅. In
other words, B intersects every finite cutset of A. This proves that Finite
Cutset Lemma follows from RTT+.

Also in the proof of the converse, which we now give, the connection
between the weakened conclusion in the Finite Cutset Lemma and the con-
ditions of RTT is very explicit. Each element of Z in the hypothesis of
RTT+, will turn out, because of (E+), to be a cutset. So in particular, an
element that intersects every finite cutset, intersects every element of Z.

Lemma 5.5. The Finite Cutset Lemma implies RTT+.

Proof. Let X be a set, A be a non-empty system of finite character on X
and Z = {Zt : t ∈ T} be a collection of finite subsets of X indexed by a set
T such that (E+) is satisfied.

As anticipated, we will see that each Zt ∈ Z is a cutset. Let t ∈ T . We
check that Zt is a cutset for A. Let A ∈ A. By (E+), there exists z ∈ Zt

such that A∪{z} ∈ A. In other words, A∪{z} ⊇ A intersects Zt. Therefore
Zt is a cutset, as desired.

Now, since A has finite character, the Finite Cutset Lemma gives an
element B of A that intersects every finite cutset for A. In particular,
B ∩ Zt 6= ∅ for all t ∈ T . This proves that RTT+ follows from the Finite
Cutset Lemma.

Corollary 5.6. RTT is equivalent to FCL.

Proof. By Lemma 5.4 and 5.5, RTT+ is equivalent to FCL. Since RTT is
equivalent to RTT+, also RTT is equivalent to FCL.

Before we turn to the discussion of the Intersection Lemma, we state the
enriched form of the Finite Cutset Lemma.

Finite Cutset Lemma (enriched form). Let A be a system of finite
character on a set X. Then for each A ∈ A, there is M ∈ A such that
A ⊆ M and M intersects every finite cutset of A.
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Remark 5.7. Since we have seen enough proofs of the equivalence between
the plain and enriched forms, and we will not need the enriched form of FC
in the further discussions, we will not state the equivalence proof this time.
But for the matter of fact, we surely know that the plain and enriched forms
of the Finite Cutset Lemma are equivalent, because Erné [2] proves that the
enriched form is equivalent to PIT, which in turn is equivalent to the plain
form by our discussions above.

5.2 Intersection Lemma

Intersection Lemma. If a system A on a set X has finite character, then
so does the system

{F ⊆ P<ω(X) : ∃S ∈ A∀F ∈ F(S ∩ F 6= ∅)},

i.e. the system of all collections of finite subsets of X intersecting a common
member of A.

Like the the Finite Cutset Lemma, also the Intersection Lemma is from
[2]. As noticed before, we will use this new principle for systems of finite
character just stated, to bridge the implication that Alexander’s Subbase
Theorem implies the Finite Cutset Lemma. This implication will finish the
proof of equivalences promised in Theorem 1.2.

First we observe how Alexander’s Subbase Theorem proves the Intersec-
tion Lemma.

Lemma 5.8. Alexander’s Subbase Theorem implies the Intersection Lemma.

Proof. Let A be a system of finite character on a set X. For each x ∈ X,
define

Ax = {S ∈ A : x /∈ S}

and let T be the topology on A generated by the subbase

B = {Ax : x ∈ X}.

We claim (I) that if Y ⊆ X, then A 6=
⋃
{Ax : x ∈ Y } ⇔ Y ∈ A. ‘⇒’:

Suppose A 6=
⋃
{Ax : x ∈ Y }. Since A ⊇

⋃
{Ax : x ∈ Y }, this means that

there is S ∈ A s.t. S /∈
⋃
{Ax : x ∈ Y }. Thus for all x ∈ Y , S /∈ Ax and

so x ∈ S. This means Y ⊆ S. Now, by the finite character of A, since all
finite subsets of Y are finite subsets of S, we conclude Y ∈ A. ‘⇐’: Suppose
Y ∈ A. Then for all x ∈ Y , Y /∈ Ax. So Y /∈

⋃
{Ax : x ∈ Y } while Y ∈ A,

which proves that A 6=
⋃
{Ax : x ∈ Y } as desired.

Now we check that the space (A,T ) satisfies the hypothesis of Alexan-
der’s Subbase Theorem. Let {Ax : x ∈ Y } ⊆ B be a cover for A indexed by
Y ⊆ X. By (I), Y /∈ A. Thus, by the finite character of A, there is F b Y
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such that F /∈ A. We again use (I) and find that {Ax : x ∈ F} is a subcover
of {Ax : x ∈ Y }, as desired. So by the Alexander’s Subbase Theorem, the
space (A,T ) is compact.

For each F b X, define

AF = {S ∈ A : F ∩ S = ∅}.

Note that S ∈ AF ⇔ F ∩ S = ∅ ⇔ ∀x ∈ F (x /∈ S) ⇔ ∀x ∈ F (S ∈ Ax) ⇔
S ∈

⋂
{Ax : x ∈ F}. Therefore we have that AF =

⋂
{Ax : x ∈ F} ∈ T

because F is finite.
Now we claim (II) that if F ⊆ P<ω(X), then A 6=

⋃
{AF : F ∈ F} ⇔

∃S ∈ A∀F ∈ F(S ∩ F 6= ∅). ‘⇒’: Suppose A 6=
⋃
{AF : F ∈ F}. Since

A ⊇
⋃
{AF : F ∈ F}, this means that there is S ∈ A s.t. S /∈

⋃
{AF :

F ∈ F}. Thus for all F ∈ F , S /∈ AF and so F ∩ S 6= ∅, as desired. ‘⇐’:
Suppose that ∃S ∈ A∀F ∈ F(S ∩ F 6= ∅). Then S /∈ AF for all F ∈ F . So
S /∈

⋃
{AF : F ∈ F} while S ∈ A, which proves that A 6=

⋃
{AF : F ∈ F}

as desired.
Finally we verify that the system

F = {F ⊆ P<ω(X) : ∃S ∈ A∀F ∈ F(S ∩ F 6= ∅)}

has finite character. Let F ⊆ P<ω(X). Suppose that F ∈ F . Then there is
S ∈ A such that S ∩F 6= ∅ for all F ∈ F . Thus if G is a finite subcollection
of F , then S ∩ G 6= ∅ for all G ∈ G ⊆ F , so G ∈ F as desired. For the
converse, suppose that all finite subcollections of F are in F . Suppose, for
contradiction, that F /∈ F . Then by (II), {AF : F ∈ F} covers A. By the
compactness of (A,T ), there is G b F such that {AF : F ∈ G} is a finite
subcover of {AF : F ∈ F}. Now, again by (II), we find that G /∈ F , which
contradicts G being a finite subset of F . Therefore F ∈ F . This proves
that F has finite character.

We conclude that Alexander’s Subbase Theorem implies the Intersection
Lemma.

Then we derive the Finite Cutset Lemma from the Intersection Lemma.

Lemma 5.9. The Intersection Lemma implies the Finite Cutset Lemma.

Proof. Let A be a non-empty system of finite character on a set X. And
let F be the system of all collections of finite subsets of X intersecting a
common member of A. Define

F = {F b X : ∀A ∈ A∃x ∈ F(S ∪ {x} ∈ A)}.

To prove that F ∈ F , we show that all finite subcollections of F are in
F . Let G b F . Since all sets in G are finite and G is finite,

⋃
G is finite.

Therefore the collection B = {A ∈ A : A ⊆
⋃
G} is finite and has a maximal
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element S. Let G ∈ G. Then there is x ∈ G such that S ∪ {x} ∈ A. Since
x ∈ G ⊆

⋃
G, we have that S ∪ {x} ⊆

⋃
G and so S ∪ {x} ∈ B. But S is

maximal in B, so S ∪ {x} = S. Thus x ∈ G ∩ S 6= ∅, which implies that
G ∈ F . Now, by the finite character of F due to the Intersection Lemma,
it follows that F ∈ F .

Let M ∈ A such that each F ∈ F intersects M . To establish that M
intersects every finite cutset for A. Let C be a finite cutset for A. Then
for all A ∈ A, C ∩ A 6= ∅, i.e. there is x ∈ C such that x ∈ A. Thus
A ∪ {x} = A ∈ A, which proves that C ∈ F . Therefore M intersects C, as
desired.

We conclude that the Intersection Lemma implies the Finite Cutset
Lemma.

Now, enjoy the following “proof”.

Proof of Theorem 1.2. See Figure 1.

Figure 1: Summary of Theorem 1.2.

6 Applications in Propositional Logic

In this section we will derive Lindenbaum’s Theorem, the Model Existence
Theorem and the Compactness Theorem in the propositional logic from the
Restricted Tukey-Teichmüller Theorem. So from now on, we assume that
RTT is valid. First we summarize the basic notions about the propositional
logic.
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Definition 6.1. We define FOR as the set of all formulas of the proposi-
tional logic, with the connectives ¬ and ∨. A truth assignment is a function
φ : FOR → {T, F} such that

(1) φ(A) 6= φ(¬A),
(2) φ(A ∨B) = T if and only if φ(A) = T or φ(B) = T ,

for all formulas A and B.
If Γ ⊆ FOR, then

• Γ is satisfiable if there is at least one truth assignment φ such that
φ(A) = T for every A ∈ Γ.

• Γ is finitely satisfiable if every finite subset of Γ is satisfiable.
• Γ is consistent if there is no formula A such that both Γ ` A and

Γ ` ¬A.

The following lemma claims that a system of consistent set of formulas
has finite character and extension property. For the extension property
proof, we will assume that the Deduction Theorem is provided.

Lemma 6.2. Let Γ ⊂ FOR. Then

(C1) Γ is consistent if and only if every finite subset of Γ is consistent.
(C2) If Γ is consistent and A is any formula, then Γ ∪ {A} or Γ ∪ {¬A} is

consistent.

Proof. First we prove (C1). ‘if’: Assume that every finite subset of Γ is
consistent. Suppose that Γ is not consistent. Then there is A ∈ Γ s.t.
Γ ` A and Γ ` ¬A. So, since every syntactical entailment contains a finite
number of inference steps, there are finite Γ′ ⊂ Γ and Γ′′ ⊂ Γ s.t. Γ′ ` A
and Γ′′ ` ¬A. But Γ′ ∪ Γ′′ ⊂ Γ is finite and entails A as well as ¬A,
contradicting the finite consistency. We conclude that Γ must be consistent.
‘only if’: Assume that Γ is consistent. Suppose that there are a finite subset
Γ′ of Γ and a formula A s.t. Γ′ ` A and Γ′ ` ¬A. Then clearly Γ ` A and
Γ ` ¬A, contradicting Γ’s consistency. We conclude that every finite subset
of Γ must be consistent.

Now we prove (C2). Suppose that Γ is consistent, but Γ ∪ {A} ` ⊥ and
Γ ∪ {¬A} ` ⊥. Then, by Deduction Theorem, Γ ` A → ⊥ and Γ ` ¬A →
⊥. Note that the first entailment is equivalent to Γ ` ¬A ∨ ⊥. Now, by
Disjunction Elimination, we have Γ ` ⊥ ∨ ⊥. So Γ ` ⊥, contradicting Γ’s
consistency. We conclude that Γ∪{A} or Γ∪{¬A} must be consistent.

Using the two properties (C1) and (C2), we will prove Lindenbaum’s
Theorem, which states that there is a maximal consistent set of formulas.
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Theorem 6.3 (Lindenbaum). Let Γ be a consistent set of formulas. Then
there is a set of formulas ∆ s.t.

(a) Γ ⊂ ∆,
(b) ∆ is consistent,
(c) for every formula A, either A ∈ ∆ or ¬A ∈ ∆.

Proof. Let X be the set of all formulas and letA = {X ′ ⊂ X : X ′ is consistent}.
By (C1), A has finite character, and by (C2), A has the extention property
with respect to ¬. So we apply the enriched RTT on Γ and obtain ∆ ∈ A
that satisfies (1), (2) and (3).

With Lindenbaum’s Theorem, we can derive the Model Existence The-
orem.

Theorem 6.4 (Model Existence). Let Γ be a consistent set of formulas.
Then Γ is satisfiable.

Proof. By Lindenbaum’s Theorem, there is a set ∆ of formulas such that

(a) Γ ⊂ ∆,
(b) ∆ is consistent,
(c) for every formula A, either A ∈ ∆ or ¬A ∈ ∆.

Define φ : FOR → {T, F} by φ(A) = T ⇔ A ∈ ∆.
We verify that φ is a truth assignment. First we check (1). Suppose, for

contradiction, that φ(A) = φ(¬A) for some formula A. Then A,¬A ∈ ∆,
contradicting the consistency of ∆. Now we check (2), i.e. for all formulas
A and B, φ(A ∨ B) = T if and only if φ(A) = T or φ(B) = T . ‘only if’:
Suppose that φ(A ∨B) = T . Then A ∨B ∈ ∆. Suppose, for contradiction,
that A,B /∈ ∆. Then by (c), ¬A,¬B ∈ ∆. Thus ¬(A∨B) = ¬A∧¬B ∈ ∆,
contradicting the consistency of ∆. Thus A ∈ ∆ or B ∈ ∆, as desired. ‘if’:
Since by the premise A ∈ ∆ or B ∈ ∆, A∨B ∈ ∆. Therefore φ(A∨B) = T ,
as desired.

Now, since φ is defined to satisfy ∆, φ satisfies Γ ⊆ ∆. This proves the
Model Existence.

To prove the Compactness Theorem, we first prove the following lemma,
saying that finite satisfiability implies consistency. For the proof, we will
assume the validity of the Soundness Theorem.

Lemma 6.5. Let Γ be a finitely satisfiable set of formulas. Then Γ is
consistent.

Proof. Suppose, for contradiction, that Γ is not consistent. Since every syn-
tactical entailment contains a finite number of inference steps, there is finite
Γ′ ⊂ Γ s.t. Γ′ ` ⊥. But then, by Soundness Theorem, Γ′ � ⊥, contradicting
Γ’s finitely satisfiability. Therefore we conclude that Γ is consistent.
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Theorem 6.6 (Compactness). Let Γ be a finitely satisfiable set of formulas.
Then Γ is satisfiable.

Proof. By Lemma 6.5, Γ is consistent. So, by the Model Existence Theorem,
Γ is satisfiable.
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