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rather than bicategories!!

Overview: variants of weighted limits in 2-categories
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The literature is rather silent about strict bilimits, while they are the most general.

Question: are they “unnecessary”, or do they have proper

examples?
___.--~strict bilimits
T |
strict limits -~ ___--~ (pseudo)bilimits
pseudolimits -~ /\
.-~ lax bilimits __.-- oplax bilimits
lax limits -~~~ oplax limits -~~~



Main observation

Main Proposition. There are 2-categories A and K, and 2-functors W: A — Cat and
d: A — K such that

1. d has a W-weighted strict bilimit,
2. d has no W-weighted strict limit, and - “not covered by strict limits”

3. the weight W is not weakly admitted (see below) by bilimits. <« “notcovered by bilimits”



Part 1: Preliminaries

2-categories (via enriched categories)
2-functors (via enriched functors)
Strict, pseudo- and (op)lax natural transformations

b=

Bicategories and some examples (< wasasked aboutina previous seminar)



1. Enriched categories — definition

Let V' be a monoidal category.

A V-category A consists of a set ob A of objects, a hom-object A(A, B) € V, for each pair
of objects of A, a composition law M = Mspc: A(B,C)® A(A, B)— A(A, C) for each
triple of objects, and an identity element j,: I — A(A, A) for each object; subject to
the associativity and unit axioms expressed by the commutativity of

(A(C,D)® A(B,C)) ® A(A, B) —*—= A(C, D) ® (A(B,C) @ A(A, B))

A(B,D) ® A(A, B) A(C, D) @ A(A,C) (1.3)

\ /

A(B,B) ® A(A, B) A(A, B) ® A(A, A)

j@ﬁ / \ ij (1.4)

I ® A(A, B) A(A, B)® 1. From: Kelly (2005)




1. Enriched categories — examples

e V=Cat =>  V-categories = 2-categories
e V=Set =>  V-categories = categories
e V=2Cat =>  V/-categories = 3-categories

V=(k-Mod,®) => V-categories = k-linear categories
* k:acommutative ring

* V=Ch(A) =>  V-categories = dg-categories
* A:apre-additive category (.= Ab-enriched category)

 V=sSet =>  V-categories = ‘simplicial categories’
* V=PreOrd =>  V-categories = preorder-enriched categories
* V=({0,1}L,A) =>  V-categories = preorders



2. Enriched functors — definition

For V-categories A and B, a V-functor T: A— B consists of a function From: Kelly (2005)
T: obA— obB

together with, for each pair A, B € ob A, amap Typ: A(A, B)—B(T A, T'B), subject to
the compatibility with composition and with the identities expressed by the commutativity

of

A(B,C)® A(A, B) M - AA,0)

T@Tl J(T (1.5)
B(TB,TC)® B(T'A,TB) B(TA,TC),

A(A, A)

N

B(TA,TA).

I T (1.6)

Definition. A 2-functor is a Cat-functor.



3. Enriched natural transformations — definition

For V-functors T,5: A — B, a V-natural transformation «: 1T —=S: A —= B is
an ob A-indexed family of components ap: [ —= B(T'A, SA) satisfying the V-naturality
condition expressed by the commutativity of

I® A(A, B) 22®L B(TB, SB) ® B(TA, TB)

l_l K

A(A, B) B(TA,SB). (1.7)

r— /

A(A,B)® I —"B(SA SB)® B(T'A,SA) From: Kelly (2005)

SR

Definition. A 2-natural transformation or strict natural transformation is a
Cat-natural transformation.




3. (Op)lax, pseudo and strict natural transformations

Given (possibly weak) 2-categories C, D and (possibly lax or oplax) 2- From:nLab
functors F,G:C — D, a lax natural transformation a: F = G is given by

e for each A € C a 1-morphism a 4: F(A) - G(A) in D, as usual

e foreach f: A - B in C a 2-morphism {:r}c:G(f)cu:]l:fﬁ.1 = ago F(f):

F(f)

FA » I'B
n__1‘ = ‘rrg
GA » G B

G(f)
+ compatibility axioms: ‘functoriality’ of @4 In A and ‘naturality’ of ay In f.

For oplax natural, reverse the direction of ;.
For pseudo natural, require ar to be an isomorphism.
For strict natural, require ar to be identity.



4. Bicategories (1) — Definition
A bicategory 1S a tup]e (B, ]_! C,a, E; }') From: Johnson and Yau (2021)

Objects: B is equipped with a class Ob(B) = By, whose elements are called
objects or 0-cells in B. If X € By, we also write X € B.

Hom Categories: For each pair of objects X,Y € B, B is equipped with a
category B(X, Y), called a hom category.

Identity 1-Cells: For each object X € B, a functor 1x:1 — B(X, X)
Horizontal Composition: For each triple of objects X, Y, Z € B, a functor
cxyz :B(Y,Z)xB(X,Y) — B(X,Z)
Associator: For objects W, X, Y, Z € B,
awxyz : cwxz(cxyz xIdgw xy) — cwyz(Idp(y z) x cwxy)

Unitors: For each pair of objects X, Y ¢ B,

/ r
cxyy(ly xIdg(xyy) —— Idg(xy) < cxxy(Idg(xy) x 1x)



4. Bicategories (2) — Definition (cont’d) From: johnsonandYau 2021)

The Unity Axiom:

The Pentagon Axiom:

(glw)f —— g(lwf)
”g*k A*éf
8f
. (kh)(&f) .
((kh)g)/ \k(h(gf))

(k(hg)) f —2L s k((hg)f)



6. Bicategories (3) — Proper examples

* BiMod, the bicategory of rings and bimodules
* Objects: Rings
* Arrows R — S: R-S bimodules
» 2-cells: bimodule homomorphisms

« Composition: if Mis a R-S bimodule and N is a S-T bimodule, then
NoM =MQsN

* [1,(X), the fundamental bigroupoid of a topological space X
* Objects: pointsin X
* Arrows: paths
» 2-cells: homotopies between paths



Part 2: Strict bilimit and 1ts proper examples

1. 2-representations vs birepresentations

2. Definitions of strict, pseudo, lax and oplax (bi)limits
« Formalism of weighted limits

« Examples

Strict (bi)limits subsume pseudo, lax and oplax (bi)limits
A class of strict bilimits ‘admitting’ another

Strict bilimits don't admit biequalisers

o oA~ W

There is a biequaliser that cannot be given as an equaliser.



1. 2-representations vs birepresentations (1)

Definition. Let C be a category. A representation of a functor F: C — Set consists
of an object r € C together with an isomorphism
p:C(r,—)=F

in the functor category [C, Set].

Example. Let A and K be categories. A limit of a functor (diagram) d:A — K is a

representation of the functor
K°P — Set:x » [A,K]|(A,,d)



1. 2-representations vs birepresentations (2)

Definition. Let K be a 2-category. A 2-representation of a 2-functor F': K — Cat

shall refer to a C'at-enriched representation of F', that is, an object » € K together
with an isomorphism

p:K(r,~) = F (1)
in K, Catlss.

Definition. Let K be a 2-category. A birepresentation of a 2-functor F': K — Cat is
an object r € K together with an equivalence

p:K(r,—) = F (2)

in [K, Catls p.

Beware: two changes from a 2-representation!



2. Definitions of strict/pseudo/lax/oplax (bi)limit

Let A and K be 2-categories, and let W: A — Cat and d: A — K be 2-functors.

Definition (in words). Let foo = strict, pseudo, lax or oplax.

« A W-weighted foo limit of d is a 2-representation for the Cat-valued
contravariant 2-functor on K of W-weighted foo cones on d.

« A W-weighted foo bilimit of d is a birepresentation for the Cat-valued
contravariant 2-functor on K of W-weighted foo cones on d.

More precisely (strict bilimit):

Definition. A WW-weighted strict bilimit of d is a birepresentation of the 2-functor

K — Cat: k— [A,Cat]ss(W, K(k,d—)).



2%, Explaining the formalism of a weighted cone
A,K: 2-categories W:A->Cat d:A->K y: W = K(—,d—)

A : ‘diagram shape’; a 2-category
S cells thatindex the constituents of a diagram
d : 2-functor that projects the diagram shape into the target 2-category
W(e) : ‘leg shape’(at *); a category
W(-) : afunctor; maps constituents from one leg shape to those from another

W () : anaturaltransformation —for each object in the domain leg shape, an
arrow in the codomain leg shape

Ye : ‘leg’ate; afunctorthat projects the leg shape into the target 2-category

N.B. objects in the leg shape — 1-cells, arrows — 2-cells.




28, Examples of 2-dimensional limits

* Conical limits (conical) strict limits] [slide]

* Inserters ‘non-conical strict limit] [new slide]
* Equifiers ‘non-conical strict limit] [new slide]
* Pseudopullbacks (conical) pseudolimit] [BB]

* Grothendieck construction [(conical)oplax colimit]

* The Grothendieck constructioﬁ on a pseudofunctor F: C > Catis equivalently
the oplax colimit of F.
P Lax(F,AX) = [ [ F, X]

* Indiscrete cats in MonCat, [foo bicolimitbutnotfoo colimit]

* MonCat, has no initial object: there are always at least two strong monoidal
functorsinto Iso, the walking isomorphism.

* Easy: 1is a bi-initial objectin MonCat,.
* Objects equivalentto 1in MonCat, are precisely the indiscrete categories.



Conical limits. For W = A4, we have

[4, Cat]ss(W,K(x,d=)) = [4, Cat]ss(A_1, K(x,d—)) = [A, K]ss(Ay, d)

Thus a A;{-weighted strict limit of d is precisely a ‘conical limit’ of d.



Inserters

Idea. An inserter is a 2-universal 1-cell the precomposition with which
“inserts” a 2-cell between a pair of parallel 2-cells.

 So aninserter cone is a lax version of an equaliser cone.

Definition. — /\,\J
A= 0(/\’;/ T
" N

« W(0) =1 because this legis just a single arrow
c W) = (- )

« W (rest) = obvious f"‘" d : — Xo $ :)/|

Examplein Cat. Let F,G: C — D be functors. The inserterof F and G is
given by the category whose objects are pairs (¢, b) where ¢ € C, and
b:F(c) - G(c), and whose arrows (c¢,b) — (c¢’,b") are arrows a:c - ¢’
in C suchthat G(a) cb = b’ o F(a).




Equifiers

Idea. An equifier is a 2-universal 1-cell the precomposition with which
identifies a pair of parallel 2-cells.

* Just like an equaliser (in our 2-dimensional context) is a 2-universal 1-cell the
precomposition with which identifies a pair of parallel 1-cells.

Definition.

~J
,q-oW S TP

L— u
« W(0) =1 because this legis just a single arrow \ /
s W) = ()

* W (rest) = obvious f"”d t = Xo $ - 7\

ExampleinCat.Let8,(: F = G:C — D be natural transformations. The
equifier of 8 and { is the full subcategory of C consisting of those objects
¢ forwhich 8, = (.



3. Strict (bi)limits subsume pseudo, lax and oplax (bi)limits

&use this as a black box “Two-dimensional monad theory” “Flexible limits for 2-categories”

Theorem (special case of Blackwell et al. 1989, Theorem 3.16 for pseudo and lax; Bird
et al. 1989, p. 7 for oplax). If A is a small 2-category, then the three inclusion 2-
functors

A, Cat|ss — [A, Catlsp, |4, Catlsy, |4, Cat|so

have left adjoints @, Q1, Q, respectively.

What follows: deduce from this that strict bilimits subsume pseudo, lax and
oplax bilimits.



When K is a 2-category, let |[K P, Cat|s p&eqv denote the wide and locally full sub-
2-category of [K °P, Cat|;, on equivalences.

Corollary. Let A be a small 2-category, K a locally small 2-category, and
W:A — Cat and d: A — K 2-functors. Let foo € {p(seudo),l(ax), o(plax)}. For

each O-cell » € K, there is an isomorphism of categories?

(K, Cat)y pgeqs (K (=, 7) ,[[A, Cat] s (Qroo (W), Aa. K, da,))])

12

(K, Cat)s pgeas (K (-, 'r),[[A, Cat] oo (W, M. K (— da))]).

That is, in simplified words, a W -weighted foo bilimit of d with vertex r is precisely a
Qoo (W)-weighted strict bilimit of d with vertex r. This way, strict bilimits subsume
pseudo, lax and oplax bilimits.



Corollary (abridged). There is an isomorphism of categories

K, Catls pweqy (K(—,7), [A, Cat]s, (QfOO(W), \a. K(—, da)))

[12

[Kop’ Caﬂs,p&eqv(K(_a T)a [Aa Ca’ﬂ s,foo (W, Ad. K(_? da)) )

Remark. We can substitute ‘p’ with s’ and ‘eqv’ with ‘iso’ above, and obtain
that that strict limits subsume pseudo, lax and oplax limits.

Remark. Pseudo(bi)limits subsume lax and oplax (bi)limits, by an analogous
mechanism (details in the post).



4. A class of strict bilimits ‘admitting’ another

Let V, W be classes of weights, that is, pairs (4, W) where A is a 2-category
and W:A — Cat is a 2-functor.

Inclusion between such classes is not a desirable way to capture the idea
that one class of strict bilimits ‘covers’ another, since a larger class of strict
bilimits may be constructed from a smaller class of strict bilimits.

Definition. We say V (weakly) admits W as classes of strict limits if every
2-category that has strict limits of type V admits strict limits of type W.

We say V (weakly) admits W as classes of strict bilimits if every 2-category
that has strict bilimits of type V admits strict bilimits of type W.

Example (Bird et al. 1989, Proposition 2.1). Products, inserters and equifiers
admit (as strict limits) all pseudo, lax and oplax limits.



5. Pseudobilimits don’t admit strict bilimits

Let M onCat, denote the 2-category of monoidal categories and strong monoidal
functors.

Proposition. M onCat, does not have strict biequalisers.

0
Proof. Consider the diagram {0} —={0,1} in MonCat,, where {0} and {0, 1}
1

are regarded as indiscrete monoidal categories (with any choice of a monoidal
structure on {0, 1}). Clearly no monoidal category can be the vertex of a cone on
this diagram, because every monoidal category is inhabited. In particular, this
diagram has no strict bilimit. This proves the proposition. B



Proposition. MonClat,, does not have strict biequalisers. B

Since we know MonClat,, is a pseudobilimit-complete 2-category (it is in fact

pseudolimit-complete; see Blackwell et al. 1989, Theorem 2.6), 1t is an example of a
pseudobilimit-complete 2-category that does not have strict biequalisers. (In
particular, it is an example of a pseudobilimit-complete 2-category that is not strict-
limit complete.) Therefore:

Corollary. Pseudobilimits don’t weakly admit strict biequalisers. In particular, they

don’t weakly admit strict bilimits. B



6. There is a biequaliser that cannot be given as an
equaliser.

We will now prove the ‘main observation’

Main Proposition. There are 2-categories A and K, and 2-functors W: A — Cat and
d: A — K such that

1. d has a W-weighted strict bilimit,
2. d has no W-weighted strict limit, and - “not covered by strict limits”

3. the weight W is not weakly admitted (see below) by bilimits. <« “notcovered by bilimits”

Namely, a 2-category K’ will be constructed from a given 2-category K that
(for suitable choices of K) has no equalisers but has biequalisers.



Construction. Let K be a 2-category. We will define a 2-category K.

The 0-cells of K’ are the 0-cells of K. For each 1-cell a: z — y in K, its two copies

a’,al:z — yare 1-cells in K/, and all 1-cells in K’ are of this form. The 2-cells

f?— g% (p,q € {0,1}) in K’ are the 2-cells f — gin K.

The identity 1-cell on a O-cell z € K" is the 1-cell id}. If fP: 2 — yand ¢%:y — 2
are 1-cells, then their composite is g? f? := (gf)max{pﬂ}; x — z. The identity as well

as vertical and horizontal composite 2-cells in K’ are given by the respective
operations in K. This defines K'.?’



Proposition.
1. K’ is a 2-category.
2. The forgetful 2-functor u: K" — K is a biequivalence of 2-categories.

3. Let W: A — Cat be a 2-functor. If K has strict W-(co)limits, then K’ has strict
W -bi(co)limits.

JcO
4. Diagrams of the form = —= ¥ admits no strict equaliser in K.

gl



1. K' is a 2-category.

Proof. 1. The composition of 1-cells is associative, for max{—l, —2} IS associative.
Identity 1-cells are unital, for 0 is unital with respect to max{—1, —3}. The vertical
and horizontal compositions of 2-cells are associative, and identity 2-cells are unital,
because the same is the case for the underlying 2-cells in K. For the likewise reason,
the horizontal composition of 2-cells preserves identity 2-cells as well as vertical

composition. Therefore K' is a 2-category.



2. The forgetful 2-functor u: K’ — K is a biequivalence of 2-categories.

Proof. The 2-functor u: K’ — K is bijective on 0-cells, 1-homwise surjective and

2-homwise bijective, hence a biequivalence

From: Johnson and Yau (2021)

Theorem 7.4.1 (Whitehead Theorem for Bicategories). A pseudofunctor of
bicategories F : B — C is a biequivalence if and only if F is

(1) essentially surjective on objects,
(2) essentially full on 1-cells, and
(3) fully faithful on 2-cells.




3. Let W: A — Cat be a 2-functor. If K has strict W-(co)limits, °¢o%cssentaty

proves that

then K' has strict W-bi(co)limits. a biequivalence
lifts bilimits)
Proof. Let d!: A — K, be a 2-functor. (there is in fact an isomorphism of categories)

Let | € K( and an equivalence of categories
conesonud’inK

K(:Ba l) = [A, Cat]s,s(Wa K(ZB, ’U,d,—))f RIEIREE A

strictly natural in x € K be a strict W-limit of ud: A — K. Let !’ be the unique 0-
cell in K’ such that I = ul’. Then we have the chain of equivalences of categories

K'(z',l') ~ K(uz',ul') = K(uz',l) ~ [A, Cat]s s (W, K(uz', ud'—))
~ [A, Cat]s (W, K'(z',d'-)) (%)

strictly natural in ' € K, providing the 0-cell I’ € K’ with the structure of a strict
W -bilimit of d’. This proves 3.



3. Let W: A — Clat be a 2-functor. If K has strict W-(co)limits,
then K' has strict W-bi(co)limits.

Proof of (). In light of 2., we have an equivalence of categories,
l.e. an equivalence in the 2-category Clat,

K'(z',y') ~ K(uz', uy')
that is strictly natural in ', 3y’ € K. It follows that we have an equivalence
K'(z',d—) ~ K(ux',ud' —)

in the 2-category [A, Catls s that is strictly natural in " € K. This induces an
equivalence of categories

. ).
conesond’inkK’ conesonud’in K

with vertex x \ [A, Ca/t] S,S(Wj K’(ZC’, d,_)) =~ [A, Oat} S,S(Wj K(’UJLC’, Ud’_))—/ with vertex ux’

that is strictly natural in z’ € K.



i (Succinctly: no cone

4. Diagrams of the form & ——=¥ admits no strict equaliser in K. ofthis diagram is
1 ‘monic’.)
g

h? . . .
Proof Let ¢ — @ bea strict cone on the diagram, then necessarily p = 1. Now whenever

1?: ¢ — cis a 1-cell such
that the triangle in

C C
AN N
] [/
fU . . fo
c T r _—_—_—_< Y commutes, then the triangle in c T} A —
1 1 !» 1
g g

must also commute. Therefore no strict cone on the diagram can satisfy the
uniqueness condition of 2-universality. This proves 4.



Corollary.
1. If K is inhabited, then K’ does not have strict equalisers.

2. If K is inhabited and has strict equalisers, then K’ has strict biequalisers but

lacks strict equalisers.

3. If K is strict-limit complete, then K’ is strict-bilimit complete but lacks strict

equalisers (so Is not strict-limit complete).

Proof.
1. As soon as a O-cell x € K’ exists, the diagram

id?
r_—_—Z X

.11
id,

can be formed, which admits no strict equaliser by the proposition’s 4.



Corollary.
1. If K is inhabited, then K’ does not have strict equalisers.

2. If K is inhabited and has strict equalisers, then K’ has strict biequalisers but

lacks strict equalisers.

3. If K is strict-limit complete, then K’ is strict-bilimit complete but lacks strict
equalisers (so Is not strict-limit complete).

Proof.
2. Immediate by 1. and the proposition’s 3.

3. Since K is strict-limit complete, it has a limit of the empty diagram, so is
Inhabited. Hence also immediate by 1. and the proposition’s 3. This proves the

corollary.



Main Proposition. There are 2-categories A and K, and 2-functors W: A — Cat and
d: A — K such that

1. d has a W-weighted strict bilimit,
2. d has no W-weighted strict limit, and - “not covered by strict limits”

3. the weight W is not weakly admitted (see below) by bilimits. <« “notcovered by bilimits”

Proof. By item 2. of the Corollary, if Kis any inhabited 2-category having strict equalisers,
then K’ gives an example: we have seen that K’ has a parallel pair of arrows [= diagram d]
* that has a strict biequaliser [fulfilling 1.],

* but has no strict equaliser [fulfilling 2.];

* moreover, we know strict biequalisers are not weakly admitted by bilimits [fulfilling 3.].

For concrete examples, we can take:
« K:=1,whichisinhabited and evidently has all strict limits, in particular strict equalisers.
e K:=Cat,whichisinhabited and known also to have all strict limits. =



Question. Is there a "naturally occurring” example of a strict bilimit that is not weakly

admissible by pseudobilimits and not equivalent to a strict [imit?

* John Bourke told me at CT2024 that Bourke, Lack and Vokrinek (2023),
"Adjoint functor theorems for homotopically enriched categories”
considers ‘E-weak coequalisers’ for E the class of surjective equivalences in
Cat: they are coequalisers whose universal property is given in terms of
surjective equivalences of categories, hence should be proper examples of
strict bi(co)limits.




Thank you!

The underlying materials and references are available in the post
“Strict bilimit and its proper examples” on sorilee.github.io



https://sorilee.github.io/
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