Identity types in predicate logic

Sori Lee

1 Jul 2024 14th Panhellenic Logic Symposium, Thessaloniki

Two preliminary questions regarding the semantics of ITT:

- 1. A (informal) question arising by looking at the history of interpretations of Intensional TT (Martin-Löf, 1970s):
 - ▶ Hofmann and Streicher (1994): types as 1-groupoids
 - \blacktriangleright Homotopy type theory (mid-late 00s): types as $\infty\text{-}\mathsf{groupoids}$

"What is special about the ∞ -groupoid interpretation?"

Two preliminary questions regarding the semantics of ITT:

- 1. A (informal) question arising by looking at the history of interpretations of Intensional TT (Martin-Löf, 1970s):
 - ▶ Hofmann and Streicher (1994): types as 1-groupoids
 - \blacktriangleright Homotopy type theory (mid-late 00s): types as $\infty\mbox{-}groupoids$ "What is special about the $\infty\mbox{-}groupoid$ interpretation?"
- 2. A structural question from the categorical perspective:

"Can identity types be added universally to a model of type theory without them?"

Two preliminary questions regarding the semantics of ITT:

- 1. A (informal) question arising by looking at the history of interpretations of Intensional TT (Martin-Löf, 1970s):
 - ▶ Hofmann and Streicher (1994): types as 1-groupoids
 - \blacktriangleright Homotopy type theory (mid-late 00s): types as $\infty\mbox{-}groupoids$ "What is special about the $\infty\mbox{-}groupoid$ interpretation?"
- 2. A structural question from the categorical perspective:

"Can identity types be added universally to a model of type theory without them?"

 \leadsto These two thoughts lead to the question:

Does some model construction based on ∞ -groupoids add identity types universally to a model of type theory without them?

Overview

In this talk, the last question is considered in a rather simplistic, truncated version of dependent type theory: many-sorted predicate logic, or more precisely indexed preorders.

Does some model construction based on 0-groupoids add "identity types" universally to an indexed preorder without them?

Overview

In this talk, the last question is considered in a rather simplistic, truncated version of dependent type theory: many-sorted predicate logic, or more precisely indexed preorders.

Does some model construction based on 0-groupoids add "identity types" universally to an indexed preorder without them?

Summary of findings:

- 1. The ER-descent construction adds identity objects universally.
- 2. The PER-descent construction adds partial identity objects universally.
- 3. Virtualisation promotes partial identity objects to identity objects, universally (but in a sense different from the previous ones).

Identity objects (1)

Let $P = (P^0, P^1)$ be an indexed (\land, \top) -preorder over a \times -category:

- P^0 is a category with binary products,
- P^1 is a functor $(P^0)^{\text{op}} \to \text{Pre}^{\wedge,\top}$.

Identity objects (1)

Let $P = (P^0, P^1)$ be an indexed (\land, \top) -preorder over a \times -category:

- P^0 is a category with binary products,
- P^1 is a functor $(P^0)^{\text{op}} \to \text{Pre}^{\wedge,\top}$.

Definition (in internal logic)

An identity object on an $X \in Ob(P^0)$ is an $Id_X \in P^1(X \times X)$, s.t.

- 1. (introduction) $x : X \vdash Id_X(x, x)$, and
- 2. (elimination) for any $Y \in Ob(P^0)$ and $p, q \in P^1(X \times X \times Y)$, if

$$x: X, y: Y; p(x, x, y) \vdash q(x, x, y),$$

then x : X, x' : X, y : Y; $Id_X(x, x') \land p(x, x', y) \vdash q(x, x', y)$. We say $P \coloneqq (P^0, P^1)$ has identity objects if each X has one.

Identity objects (2)

Definition (properly)

An identity object on an $X \in Ob(P^0)$ is an $Id_X \in P^1(X \times X)$, s.t.

- 1. (introduction) $\top \leq (X \xrightarrow{\delta} X \times X)^*(\mathrm{Id}_X)$, and
- 2. (elimination) for any $Y \in Ob(P^0)$ and $p, q \in P^1(X \times X \times Y)$, if

$$(X \times Y \xrightarrow{\delta \times Y} X \times X \times Y)^*(p) \leq (X \times Y \xrightarrow{\delta \times Y} X \times X \times Y)^*(q),$$

then $(X \times X \times Y \xrightarrow{\pi_1, \pi_2} X \times X)^*(\mathrm{Id}_X) \land p \leqslant q$.

We say $P \coloneqq (P^0, P^1)$ has identity objects if each X has one.

Identity objects (2)

Definition (properly)

An identity object on an $X \in Ob(P^0)$ is an $Id_X \in P^1(X \times X)$, s.t.

- 1. (introduction) $\top \leq (X \xrightarrow{\delta} X \times X)^*(\mathrm{Id}_X)$, and
- 2. (elimination) for any $Y \in Ob(P^0)$ and $p, q \in P^1(X \times X \times Y)$, if

$$(X \times Y \xrightarrow{\delta \times Y} X \times X \times Y)^*(p) \leqslant (X \times Y \xrightarrow{\delta \times Y} X \times X \times Y)^*(q),$$

then $(X \times X \times Y \xrightarrow{\pi_1, \pi_2} X \times X)^*(\mathrm{Id}_X) \land p \leq q$.

We say $P \coloneqq (P^0, P^1)$ has identity objects if each X has one.

Theorem

An indexed (\land, \top) -poset over a finite-product category has identity objects if and only if it has 'Lawvere equality', i.e. is an 'elementary doctrine'.

The ER-descent construction

Theorem (Pasquali 2015)

There is a 2-functor ER: $IdxPos_{sn}^{\times,1,\wedge,\top} \rightarrow ED$ that is right 2-adjoint to inclusion.

The ER-descent construction

Theorem (Pasquali 2015)

There is a 2-functor ER: $IdxPos_{sn}^{\times,1,\wedge,\top} \rightarrow ED$ that is right 2-adjoint to inclusion.

Construction (Maietti-Rosolini-Pasquali)

The indexed preorder ER(P) is given by:

- Objects in $ER(P)^0$: equivalence relations (X, \sim) in P
- Arrows $(X, \sim_X) \to (Y, \sim_Y)$: $X \xrightarrow{f} Y$ s.t. $\sim_X \leq (f \times f)^* (\sim_Y)$
- $\operatorname{ER}(P)^1(X, \sim) \coloneqq \{p \mid \pi_1^*(p) \land \sim \leqslant \pi_2^*(p)\} \stackrel{\text{full}}{\subset} P^1(X).$

The ER-descent construction

Theorem (Pasquali 2015)

There is a 2-functor ER: $IdxPos_{sn}^{\times,1,\wedge,\top} \rightarrow ED$ that is right 2-adjoint to inclusion.

Construction (Maietti-Rosolini-Pasquali)

The indexed preorder ER(P) is given by:

- Objects in $ER(P)^0$: equivalence relations (X, \sim) in P
- Arrows $(X, \sim_X) \to (Y, \sim_Y)$: $X \xrightarrow{f} Y$ s.t. $\sim_X \leq (f \times f)^* (\sim_Y)$
- $\operatorname{ER}(P)^1(X, \sim) \coloneqq \{p \mid \pi_1^*(p) \land \sim \leqslant \pi_2^*(p)\} \stackrel{\operatorname{full}}{\subset} P^1(X).$

Scholium

The assignment $P \mapsto ER(P)$ extends to a 2-functor $IdxPre_{pn}^{\times,\wedge,\top} \to IdxPre_{pn}^{\times,\wedge,\top,Id}$ that is right biadjoint to the inclusion 2-functor.

PER-descent construction

Let P be an indexed \land -preorder over a binary-product category.

Definition

Define PER(P) in the same way as ER(P), but with as objects in $PER(P)^0$ partial equivalence relations (X, \sim) in P instead.

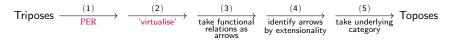
PER-descent construction

Let P be an indexed \land -preorder over a binary-product category.

Definition

Define PER(P) in the same way as ER(P), but with as objects in $PER(P)^0$ partial equivalence relations (X, \sim) in P instead.

Example (Tripos-to-topos construction)



Partial identity objects (1)

Definition (in internal logic)

We say P has partial identity objects if each object $X \in P^0$ is equipped with an element $\operatorname{PId}_X \in P^1(X \times X)$, such that

- 1. (partial reflexivity) $\operatorname{PId}_X(x, x') \vdash \operatorname{PId}_X(x, x), \operatorname{PId}_X(x', x'),$
- 2. (*paravirtual elimination*) for any $Y \in P^0$ and $p, q \in P^1(X \times X \times Y)$, if

 $\operatorname{PId}_X(x,x) \wedge \operatorname{PId}_Y(y,y) \wedge p(x,x,y) \vdash q(x,x,y),$

then $\operatorname{PId}_{Y}(y, y) \wedge \operatorname{PId}_{X}(x, x') \wedge p(x, x', y) \vdash q(x, x', y),$

- 3. each arrow $f: X \to Y$ satisfies $\operatorname{PId}_X(x,x') \vdash \operatorname{PId}_Y(f(x),f(x'))$,
- 4. $\operatorname{PId}_{X \times Y}(x, y, x', y') \rightarrow \operatorname{PId}_X(x, x') \land \operatorname{PId}_Y(y, y').$

Partial identity objects (1)

Definition (in internal logic)

We say P has partial identity objects if each object $X \in P^0$ is equipped with an element $\operatorname{PId}_X \in P^1(X \times X)$, such that

- 1. (partial reflexivity) $\operatorname{PId}_X(x, x') \vdash \operatorname{PId}_X(x, x), \operatorname{PId}_X(x', x'),$
- 2. (*paravirtual elimination*) for any $Y \in P^0$ and $p, q \in P^1(X \times X \times Y)$, if

 $\operatorname{PId}_X(x,x) \wedge \operatorname{PId}_Y(y,y) \wedge p(x,x,y) \vdash q(x,x,y),$

then $\operatorname{PId}_{Y}(y, y) \wedge \operatorname{PId}_{X}(x, x') \wedge p(x, x', y) \vdash q(x, x', y),$

- 3. each arrow $f: X \to Y$ satisfies $\operatorname{PId}_X(x,x') \vdash \operatorname{PId}_Y(f(x),f(x'))$,
- 4. $\operatorname{PId}_{X \times Y}(x, y, x', y') \rightarrow \operatorname{PId}_X(x, x') \land \operatorname{PId}_Y(y, y').$

Remark

Choice of identity objects give partial identity objects.

Partial identity objects (2)

Definition (properly)

We say P has partial identity objects if each object $X \in P^0$ is equipped with an element $\operatorname{PId}_X \in P^1(X \times X)$, such that

- 1. (partial reflexivity) $\operatorname{PId}_X \leq \langle \pi_1, \pi_1 \rangle^* (\operatorname{PId}_X), \langle \pi_2, \pi_2 \rangle^* (\operatorname{PId}_X),$
- 2. (*paravirtual elimination*) for any $Y \in P^0$ and $p, q \in P^1(X \times X \times Y)$, if

 $(X \times Y \xrightarrow{\pi_1, \pi_1} X \times X)^* (\operatorname{PId}_X) \land (X \times Y \xrightarrow{\pi_2, \pi_2} Y \times Y)^* (\operatorname{PId}_Y) \land$ $(X \times Y \xrightarrow{\delta \times Y} X \times X \times Y)^* (p) \leq (X \times Y \xrightarrow{\delta \times Y} X \times X \times Y)^* (q),$

then $\langle \pi_3, \pi_3 \rangle^* (\operatorname{PId}_Y) \land \langle \pi_1, \pi_2 \rangle^* (\operatorname{PId}_X) \land p \leqslant q$,

- 3. each arrow $f: X \to Y$ in P^0 satisfies $\operatorname{PId}_X \leq (f \times f)^*(\operatorname{PId}_Y)$,
- 4. $\operatorname{PId}_{X \times Y} \simeq \langle \pi_1, \pi_3 \rangle^* (\operatorname{PId}_X) \land \langle \pi_2, \pi_4 \rangle^* (\operatorname{PId}_Y).$

PER-descent adds partial identity objects universally

Theorem The assignment $P \mapsto \text{PER}(P)$ extends to a 2-functor $\text{IdxPre}_{pn}^{\times,\wedge} \rightarrow \text{IdxPre}_{pn}^{\times,\wedge,\text{PId}}$ that is right biadjoint to the inclusion 2-functor.

Virtualisation (1)

Let *P* be an *oplaxly sectioned* indexed preorder: each object $X \in P^0$ is equipped with an element $os_X \in P^1(X)$, and every arrow $f: X \to Y$ in P^0 satisfies $os_X \leq f^*(os_Y)$.

Example

An indexed preorder with partial identity objects is oplaxly sectioned, with $os_X \coloneqq (X \xrightarrow{\delta} X \times X)^*(\operatorname{PId}_X)$.

Virtualisation (1)

Let *P* be an *oplaxly sectioned* indexed preorder: each object $X \in P^0$ is equipped with an element $os_X \in P^1(X)$, and every arrow $f: X \to Y$ in P^0 satisfies $os_X \leq f^*(os_Y)$.

Example

An indexed preorder with partial identity objects is oplaxly sectioned, with $os_X \coloneqq (X \xrightarrow{\delta} X \times X)^*(\operatorname{PId}_X)$.

Definition

We define $\operatorname{Virt}(P)$ to be the indexed preorder with $\operatorname{Virt}(P)^0 \coloneqq P^0$ and $\operatorname{Virt}(P)^1(X) \coloneqq (\operatorname{U}_{\operatorname{Set}}P^1(X), \stackrel{\mathrm{v}}{\leqslant})$ where $p \stackrel{\mathrm{v}}{\leqslant} q$ if and only if $\operatorname{os}_X \land p \leqslant q$.

Virtualisation (1)

Let *P* be an *oplaxly sectioned* indexed preorder: each object $X \in P^0$ is equipped with an element $os_X \in P^1(X)$, and every arrow $f: X \to Y$ in P^0 satisfies $os_X \leq f^*(os_Y)$.

Example

An indexed preorder with partial identity objects is oplaxly sectioned, with $os_X \coloneqq (X \xrightarrow{\delta} X \times X)^*(\operatorname{PId}_X)$.

Definition

We define $\operatorname{Virt}(P)$ to be the indexed preorder with $\operatorname{Virt}(P)^0 \coloneqq P^0$ and $\operatorname{Virt}(P)^1(X) \coloneqq (\operatorname{U}_{\operatorname{Set}}P^1(X), \overset{\mathrm{v}}{\leqslant})$ where $p \overset{\mathrm{v}}{\leqslant} q$ if and only if $\operatorname{os}_X \land p \leqslant q$.

Proposition

Virt $(P)^1$ is in fact a Kleisli as well as EM object for a (necessarily idempotent) comonad $\mathbf{v} \colon P^1 \to P^1$ in the Pre-category $[(P^0)^{\mathrm{op}}, \operatorname{Pre}^{\wedge}]_{\mathrm{oplax}}$ given by $\mathbf{v}_X(p) \coloneqq \mathrm{os}_X \wedge p$.

Virtualisation (2)

Remark

- 1. The os_X become tops in Virt(P), as $os_X \land p \leq os_X$ for any p.
- If P has partial identity objects, then the PId_X become identity objects in Virt(P), for:
 - Id-introduction for PId_X just means $\delta^*(\operatorname{PId}_X)$ is a top.
 - Id-elimination for PId_X in Virt(P) is equivalent to paravirtual elimination in P, under the other three axioms of partial identity.

Virtualisation (2)

Remark

- 1. The os_X become tops in Virt(P), as $os_X \land p \leq os_X$ for any p.
- If P has partial identity objects, then the PId_X become identity objects in Virt(P), for:
 - Id-introduction for PId_X just means $\delta^*(PId_X)$ is a top.
 - Id-elimination for PId_X in Virt(P) is equivalent to paravirtual elimination in P, under the other three axioms of partial identity.

Theorem

The assignment $P \mapsto Virt(P)$ extends to

- 1. a 2-functor $IdxPre_{on}^{\wedge,os} \rightarrow IdxPre_{on}^{\wedge,\top}$, as well as
- 2. *a 2-functor* IdxPre_{on}^{×, ^, PId} \rightarrow IdxPre_{on}^{×, ^, T,Id}

ambidextrously biadjoint to 'the' respective inclusion 2-functor.

The *left*-biadjoint part also holds with respect to pseudonatural morphisms.

 The ER-descent construction is also a left-biadjoint completion, for adding quotients. (Maietti-Rosolini 2013) Under investigation: an analogous result for the PER-descent construction.

- The ER-descent construction is also a left-biadjoint completion, for adding quotients. (Maietti-Rosolini 2013) Under investigation: an analogous result for the PER-descent construction.
- 2. Can we see the first two axioms of partial identity objects systematically as an introduction-elimination pair?

- The ER-descent construction is also a left-biadjoint completion, for adding quotients. (Maietti-Rosolini 2013) Under investigation: an analogous result for the PER-descent construction.
- 2. Can we see the first two axioms of partial identity objects systematically as an introduction-elimination pair?
- Does a model construction based on 1-groupoids universally add identity types to a model of '1-truncated' type theory?
 .

Does a model construction based on ∞ -groupoids universally add identity types to a model of type theory?

- The ER-descent construction is also a left-biadjoint completion, for adding quotients. (Maietti-Rosolini 2013) Under investigation: an analogous result for the PER-descent construction.
- 2. Can we see the first two axioms of partial identity objects systematically as an introduction-elimination pair?
- 3. Does a model construction based on 1-groupoids universally add identity types to a model of '1-truncated' type theory?

Does a model construction based on ∞ -groupoids universally add identity types to a model of type theory?

More details: for now, the short paper on sorilee.github.io