Identity types in predicate logic

Sori Lee

1 Jul 2024
14th Panhellenic Logic Symposium, Thessaloniki

Motivation: a question in semantics of Intensional TT
Intensional TT := Dependent TT + Id without identity reflection

1/12

Motivation: a question in semantics of Intensional TT
Intensional TT := Dependent TT + Id without identity reflection

Two preliminary questions regarding the semantics of ITT:

1. A (informal) question arising by looking at the history of
interpretations of Intensional TT (Martin-Lof, 1970s):
> Hofmann and Streicher (1994): types as 1-groupoids
> Homotopy type theory (mid-late 00s): types as co-groupoids

“What is special about the co-groupoid interpretation?”

1/12

Motivation: a question in semantics of Intensional TT
Intensional TT := Dependent TT + Id without identity reflection

Two preliminary questions regarding the semantics of ITT:

1. A (informal) question arising by looking at the history of
interpretations of Intensional TT (Martin-Lof, 1970s):

> Hofmann and Streicher (1994): types as 1-groupoids
> Homotopy type theory (mid-late 00s): types as co-groupoids

“What is special about the co-groupoid interpretation?”

2. A structural question from the categorical perspective:

“Can identity types be added universally to a model of type
theory without them?”

1/12

Motivation: a question in semantics of Intensional TT
Intensional TT := Dependent TT + Id without identity reflection

Two preliminary questions regarding the semantics of ITT:

1. A (informal) question arising by looking at the history of
interpretations of Intensional TT (Martin-Lof, 1970s):

> Hofmann and Streicher (1994): types as 1-groupoids
> Homotopy type theory (mid-late 00s): types as co-groupoids

“What is special about the co-groupoid interpretation?”
2. A structural question from the categorical perspective:

“Can identity types be added universally to a model of type
theory without them?”

w~> These two thoughts lead to the question:

Does some model construction based on oco-groupoids add identity
types universally to a model of type theory without them?

1/12

Overview

In this talk, the last question is considered in a rather simplistic,
truncated version of dependent type theory: many-sorted predicate
logic, or more precisely indexed preorders.

Does some model construction based on 0-groupoids add “identity
types” universally to an indexed preorder without them?

2/12

Overview

In this talk, the last question is considered in a rather simplistic,
truncated version of dependent type theory: many-sorted predicate
logic, or more precisely indexed preorders.

Does some model construction based on 0-groupoids add “identity
types” universally to an indexed preorder without them?

Summary of findings:
1. The ER-descent construction adds identity objects universally.

2. The PER-descent construction adds partial identity objects
universally.

3. Virtualisation promotes partial identity objects to identity
objects, universally (but in a sense different from the previous ones).

2/12

|dentity objects (1)
Let P = (P°, P1) be an indexed (A, T)-preorder over a x-category:

» PO is a category with binary products,
» Pl is a functor (P°)°P — Pre”'.

3/12

|dentity objects (1)

Let P = (P°, P1) be an indexed (A, T)-preorder over a x-category:
» PO is a category with binary products,
» Pl is a functor (P°)°P — Pre”'.

Definition (in internal logic)
An identity object on an X € Ob(P?) is an Idx € P} (X x X), s.t.
1. (introduction) x : X + Idx(x, x), and
2. (elimination) for any Y € Ob(P°%) and p,q € P}(X x X x Y), if

x X,y Yoplx, x,y) = qlx, x,),

then x: X, x": X,y : Y ;Idx(x,x") A p(x,x",y) = q(x,x", y).
We say P := (P9, P) has identity objects if each X has one.

3/12

|dentity objects (2)

Definition (properly)
An identity object on an X € Ob(P?) is an Idx € P1(X x X), s.t.

1. (introduction) T < (X 2 X x X)*(Idx), and
2. (elimination) for any Y € Ob(P°) and p,q e P(X x X x Y), if
(Xx Y2 X x XxY)*(p) < (X x Y2 XxXxY)*q),

then (X x X x Y ™52 X x X)*(Idx) A p < q.
We say P == (P9, P!) has identity objects if each X has one.

4/12

|dentity objects (2)

Definition (properly)
An identity object on an X € Ob(P?) is an Idx € P1(X x X), s.t.
1. (introduction) T < (X 5 X x X)*(Idx), and
2. (elimination) for any Y € Ob(P°) and p,q e P(X x X x Y), if

(X x Y2 Xx X xY)*(p) < (X x Y2 X x X x Y)*(q),

then (X x X x Y ™52 X x X)*(Idx) A p < q.
We say P == (P9, P!) has identity objects if each X has one.

Theorem
An indexed (A, T)-poset over a finite-product category has identity
objects if and only if it has ‘Lawvere equality’, i.e. is an ‘elementary
doctrine’.

4/12

The ER-descent construction

Theorem (Pasquali 2015)

There is a 2-functor ER: IdeosSXn'l’A’T — ED that is right
2-adjoint to inclusion.

5/12

The ER-descent construction

Theorem (Pasquali 2015)

There is a 2-functor ER: IdeosSXn'l’A’T — ED that is right
2-adjoint to inclusion.

Construction (Maietti-Rosolini-Pasquali)
The indexed preorder ER(P) is given by:
» Objects in ER(P)?: equivalence relations (X, ~) in P

> Arrows (X, ~x) — (Y, ~y): X 5 ¥ st. ~x < (f x f)*(~y)

> BR(P)H(X,~) = {p | 7 (p) A ~ < m5(p)} & PL(X).

5/12

The ER-descent construction

Theorem (Pasquali 2015)

There is a 2-functor ER: Ideossxn'l’A’T — ED that is right
2-adjoint to inclusion.

Construction (Maietti-Rosolini-Pasquali)
The indexed preorder ER(P) is given by:
» Objects in ER(P)?: equivalence relations (X, ~) in P

> Arrows (X, ~x) — (Y, ~y): X 5 ¥ st. ~x < (f x f)*(~y)

> BR(P)H(X,~) = {p | 7 (p) A ~ < m5(p)} & PL(X).

Scholium

The assignment P — ER(P) extends to a 2-functor
Idere;ﬁA'T — Idere;ﬁ’\'T'Id that is right biadjoint to the
inclusion 2-functor.

5/12

PER-descent construction

Let P be an indexed A-preorder over a binary-product category.
Definition

Define PER(P) in the same way as ER(P), but with as objects in
PER(P)° partial equivalence relations (X, ~) in P instead.

6/12

PER-descent construction

Let P be an indexed A-preorder over a binary-product category.

Definition
Define PER(P) in the same way as ER(P), but with as objects in
PER(P)° partial equivalence relations (X, ~) in P instead.

Example (Tripos-to-topos construction)

(1) (2) (3) (4) (5)

PER ‘virtualise’ take fqnctionaf identify arrows take underlying

relations as by extensionality category
arrows

Triposes Toposes

6/12

Partial identity objects (1)

Definition (in internal logic)

We say P has partial identity objects if each object X € P? is
equipped with an element PIdx € P(X x X), such that

1. (partial reflexivity) PIdx(x, x") - PIdx(x, x), PIdx (x’, x),
2. (paravirtual elimination) for any Y € P° and
p,ge PL X x X xY),if
Pldx (x, x) A PIdy (y, y)n p(x, x,) = q(x, x, y),

then PIdy (y, y) A PIdx(x, x') A p(x, x", y) - q(x, x", y),
3. each arrow f: X — Y satisfies Pldx (x,x’) + PIdy (f(x),f(x")),

4. Pldxyy(x,y,x",y") 4 Pldx(x, x’) A PIdy (y, y’').

7/12

Partial identity objects (1)

Definition (in internal logic)

We say P has partial identity objects if each object X € P? is
equipped with an element PIdx € P(X x X), such that

1. (partial reflexivity) PIdx(x, x") - PIdx(x, x), PIdx (x’, x),
2. (paravirtual elimination) for any Y € P° and
p,ge PL X x X xY),if
Pldx (x, x) A PIdy (y, y)n p(x, x,) = q(x, x, y),

then PIdy (y, y) A PIdx(x, x') A p(x, x", y) - q(x, x", y),
3. each arrow f: X — Y satisfies Pldx (x,x’) + PIdy (f(x),f(x")),

4. Pldxyy(x,y,x",y") 4 Pldx(x, x’) A PIdy (y, y’').

Remark
Choice of identity objects give partial identity objects.

7/12

Partial identity objects (2)

Definition (properly)
We say P has partial identity objects if each object X € PO is
equipped with an element PIdx € P(X x X), such that

1. (partial reflexivity) Pldx < {(my, m)*(Pldx), {72, 72)* (PId x),

2. (paravirtual elimination) for any Y € P® and
p,ge PL X x X xY),if

(X x Y ™5 X x X)*(PIdx) A (X x Y ™52 ¥ x Y)*(PIdy) A
(Xx Y2 X x XxY)*(p) < (X x Y2 XxXxY)*q),

then <7T3, 7T3>*(P1dy)/\ <7T1, 7'[2>* (PIdx) A p < q,
3. each arrow f: X — Y in PY satisfies PIdx < (f x f)*(PIdy),
4, PIdXXy >~ <7’[1,7‘[3>* (PIdX <7T2 7T4>* PIdy)

8/12

PER-descent adds partial identity objects universally

Theorem
The assignment P — PER(P) extends to a 2-functor Idere}fﬁA —

IdxPre ;"' that is right biadjoint to the inclusion 2-functor.

9/12

Virtualisation (1)
Let P be an oplaxly sectioned indexed preorder: each object
X € PY is equipped with an element osx € P1(X), and every arrow
f: X — Y in PY satisfies osx < f*(osy).
Example
An indexed preorder with partial identity objects is oplaxly
sectioned, with osx = (X 5 X x X)*(PIdx).

10/12

Virtualisation (1)
Let P be an oplaxly sectioned indexed preorder: each object
X € PY is equipped with an element osx € P1(X), and every arrow
f: X — Y in PY satisfies osx < f*(osy).
Example
An indexed preorder with partial identity objects is oplaxly
sectioned, with osx = (X 5 X x X)*(PIdx).

Definition

We define Virt(P) to be the indexed preorder with Virt(P)? = PO
and Virt(P)}(X) == (UsetPH(X), é) where p % g if and only if
0osx Ap<qg.

10/12

Virtualisation (1)
Let P be an oplaxly sectioned indexed preorder: each object
X € PY is equipped with an element osx € P1(X), and every arrow
f: X — Y in PY satisfies osx < f*(osy).
Example
An indexed preorder with partial identity objects is oplaxly
sectioned, with osx = (X 5 X x X)*(PIdx).

Definition

We define Virt(P) to be the indexed preorder with Virt(P)? = PO
and Virt(P)}(X) == (UsetPH(X), é) where p % g if and only if
0osx Ap<qg.

Proposition

Virt(P)! is in fact a Kleisli as well as EM object for a (necessarily
idempotent) comonad v: P — P in the Pre-category

[(PO)oP, Pre”|oplax given by vx(p) = 0sx A p.

10/12

Virtualisation (2)

Remark

1. The osx become tops in Virt(P), as osx A p < osx for any p.
2. If P has partial identity objects, then the PIdx become
identity objects in Virt(P), for:
> |d-introduction for PIdx just means *(PIdy) is a top.
> |d-elimination for PIdx in Virt(P) is equivalent to paravirtual
elimination in P, under the other three axioms of partial
identity.

11/12

Virtualisation (2)

Remark

1. The osx become tops in Virt(P), as osx A p < osx for any p.
2. If P has partial identity objects, then the PIdx become
identity objects in Virt(P), for:
> |d-introduction for PIdx just means *(PIdy) is a top.
> |d-elimination for PIdx in Virt(P) is equivalent to paravirtual

elimination in P, under the other three axioms of partial
identity.

Theorem
The assignment P — Virt(P) extends to

1. a 2-functor IdxPre/;*s — IdxPre);", as well as

2. a 2-functor TdxPrejs ™% — IdxPrel;" '™
ambidextrously biadjoint to ‘the’ respective inclusion 2-functor.

The left-biadjoint part also holds with respect to pseudonatural

morphisms.
11/12

Discussions

1. The ER-descent construction is also a left-biadjoint
completion, for adding quotients. (Maietti-Rosolini 2013)

Under investigation: an analogous result for the PER-descent
construction.

12/12

https://sorilee.github.io/

Discussions

1. The ER-descent construction is also a left-biadjoint
completion, for adding quotients. (Maietti-Rosolini 2013)

Under investigation: an analogous result for the PER-descent
construction.

2. Can we see the first two axioms of partial identity objects
systematically as an introduction-elimination pair?

12/12

https://sorilee.github.io/

Discussions

1. The ER-descent construction is also a left-biadjoint
completion, for adding quotients. (Maietti-Rosolini 2013)

Under investigation: an analogous result for the PER-descent
construction.

2. Can we see the first two axioms of partial identity objects
systematically as an introduction-elimination pair?

3. Does a model construction based on 1-groupoids universally
add identity types to a model of ‘1-truncated’ type theory?

Does a model construction based on co-groupoids universally
add identity types to a model of type theory?

12/12

https://sorilee.github.io/

Discussions

1. The ER-descent construction is also a left-biadjoint
completion, for adding quotients. (Maietti-Rosolini 2013)

Under investigation: an analogous result for the PER-descent
construction.

2. Can we see the first two axioms of partial identity objects
systematically as an introduction-elimination pair?

3. Does a model construction based on 1-groupoids universally
add identity types to a model of ‘1-truncated’ type theory?

Does a model construction based on co-groupoids universally
add identity types to a model of type theory?

More details: for now, the short paper on sorilee.github.io

12/12

https://sorilee.github.io/

