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Motivation: a question in semantics of Intensional TT
Intensional TT := Dependent TT + Id without identity reflection

Two preliminary questions regarding the semantics of ITT:

1. A (informal) question arising by looking at the history of
interpretations of Intensional TT (Martin-Löf, 1970s):

§ Hofmann and Streicher (1994): types as 1-groupoids
§ Homotopy type theory (mid-late 00s): types as ∞-groupoids

“What is special about the ∞-groupoid interpretation?”

2. A structural question from the categorical perspective:

“Can identity types be added universally to a model of type
theory without them?”

ù These two thoughts lead to the question:

Does some model construction based on ∞-groupoids add identity
types universally to a model of type theory without them?
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§ Hofmann and Streicher (1994): types as 1-groupoids
§ Homotopy type theory (mid-late 00s): types as ∞-groupoids

“What is special about the ∞-groupoid interpretation?”

2. A structural question from the categorical perspective:

“Can identity types be added universally to a model of type
theory without them?”

ù These two thoughts lead to the question:

Does some model construction based on ∞-groupoids add identity
types universally to a model of type theory without them?

1 / 12



Motivation: a question in semantics of Intensional TT
Intensional TT := Dependent TT + Id without identity reflection

Two preliminary questions regarding the semantics of ITT:

1. A (informal) question arising by looking at the history of
interpretations of Intensional TT (Martin-Löf, 1970s):
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Overview

In this talk, the last question is considered in a rather simplistic,
truncated version of dependent type theory: many-sorted predicate
logic, or more precisely indexed preorders.

Does some model construction based on 0-groupoids add “identity
types” universally to an indexed preorder without them?

Summary of findings:

1. The ER-descent construction adds identity objects universally.

2. The PER-descent construction adds partial identity objects
universally.

3. Virtualisation promotes partial identity objects to identity
objects, universally (but in a sense different from the previous ones).
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Identity objects (1)

Let P = (P0,P1) be an indexed (^,J)-preorder over a ˆ-category:

§ P0 is a category with binary products,

§ P1 is a functor (P0)op Ñ Pre^,J.

Definition (in internal logic)

An identity object on an X P Ob(P0) is an IdX P P1(X ˆ X ), s.t.

1. (introduction) x : X $ IdX (x , x), and

2. (elimination) for any Y P Ob(P0) and p, q P P1(X ˆ X ˆ Y ), if

x : X , y : Y ; p(x , x , y) $ q(x , x , y),

then x : X , x 1 : X , y : Y ; IdX (x , x
1) ^ p(x , x 1, y) $ q(x , x 1, y).

We say P – (P0,P1) has identity objects if each X has one.
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Identity objects (2)

Definition (properly)

An identity object on an X P Ob(P0) is an IdX P P1(X ˆ X ), s.t.

1. (introduction) J ď (X
δ

Ñ X ˆ X )˚(IdX ), and

2. (elimination) for any Y P Ob(P0) and p, q P P1(X ˆ X ˆ Y ), if

(X ˆ Y
δˆY
Ñ X ˆ X ˆ Y )˚(p) ď (X ˆ Y

δˆY
Ñ X ˆ X ˆ Y )˚(q),

then (X ˆ X ˆ Y
π1,π2
Ñ X ˆ X )˚(IdX ) ^ p ď q.

We say P – (P0,P1) has identity objects if each X has one.

Theorem
An indexed (^,J)-poset over a finite-product category has identity
objects if and only if it has ‘Lawvere equality’, i.e. is an ‘elementary
doctrine’.
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The ER-descent construction

Theorem (Pasquali 2015)

There is a 2-functor ER : IdxPosˆ,1,^,J
sn Ñ ED that is right

2-adjoint to inclusion.

Construction (Maietti-Rosolini-Pasquali)

The indexed preorder ER(P) is given by:

§ Objects in ER(P)0: equivalence relations (X ,„) in P

§ Arrows (X ,„X ) Ñ (Y ,„Y ): X
f

Ñ Y s.t. „X ď (f ˆ f )˚(„Y )

§ ER(P)1(X ,„) – tp | π˚
1(p) ^ „ ď π˚

2(p)u
full
Ă P1(X ).

Scholium
The assignment P ÞÑ ER(P) extends to a 2-functor
IdxPreˆ,^,J

pn Ñ IdxPreˆ,^,J,Id
pn that is right biadjoint to the

inclusion 2-functor.
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PER-descent construction

Let P be an indexed ^-preorder over a binary-product category.

Definition
Define PER(P) in the same way as ER(P), but with as objects in
PER(P)0 partial equivalence relations (X ,„) in P instead.

Example (Tripos-to-topos construction)

Triposes Toposes
(1)

PER

(2)

‘virtualise’

(3)

take functional
relations as

arrows

(4)

identify arrows
by extensionality

(5)

take underlying
category
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Partial identity objects (1)

Definition (in internal logic)

We say P has partial identity objects if each object X P P0 is
equipped with an element PIdX P P1(X ˆ X ), such that

1. (partial reflexivity) PIdX (x , x
1) $ PIdX (x , x),PIdX (x

1, x 1),

2. (paravirtual elimination) for any Y P P0 and
p, q P P1(X ˆ X ˆ Y ), if

PIdX (x , x) ^ PIdY (y , y)^ p(x , x , y) $ q(x , x , y),

then PIdY (y , y)^ PIdX (x , x
1) ^ p(x , x 1, y) $ q(x , x 1, y),

3. each arrow f : X Ñ Y satisfies PIdX (x ,x
1) $ PIdY (f (x),f (x 1)),

4. PIdXˆY (x , y , x
1, y 1) %$ PIdX (x , x

1) ^ PIdY (y , y
1).

Remark
Choice of identity objects give partial identity objects.
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Partial identity objects (2)

Definition (properly)

We say P has partial identity objects if each object X P P0 is
equipped with an element PIdX P P1(X ˆ X ), such that

1. (partial reflexivity) PIdX ď xπ1,π1y˚(PIdX ), xπ2,π2y˚(PIdX ),

2. (paravirtual elimination) for any Y P P0 and
p, q P P1(X ˆ X ˆ Y ), if

(X ˆ Y
π1,π1
Ñ X ˆ X )˚(PIdX ) ^ (X ˆ Y

π2,π2
Ñ Y ˆ Y )˚(PIdY ) ^

(X ˆ Y
δˆY
Ñ X ˆ X ˆ Y )˚(p) ď (X ˆ Y

δˆY
Ñ X ˆ X ˆ Y )˚(q),

then xπ3,π3y˚(PIdY )^ xπ1,π2y˚(PIdX ) ^ p ď q,

3. each arrow f : X Ñ Y in P0 satisfies PIdX ď (f ˆ f )˚(PIdY ),

4. PIdXˆY » xπ1,π3y˚(PIdX ) ^ xπ2,π4y˚(PIdY ).
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PER-descent adds partial identity objects universally

Theorem
The assignment P ÞÑ PER(P) extends to a 2-functor IdxPreˆ,^

pn Ñ

IdxPreˆ,^,PId
pn that is right biadjoint to the inclusion 2-functor.
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Virtualisation (1)
Let P be an oplaxly sectioned indexed preorder: each object
X P P0 is equipped with an element osX P P1(X ), and every arrow
f : X Ñ Y in P0 satisfies osX ď f ˚(osY ).

Example

An indexed preorder with partial identity objects is oplaxly

sectioned, with osX – (X
δ

Ñ X ˆ X )˚(PIdX ).

Definition
We define Virt(P) to be the indexed preorder with Virt(P)0 – P0

and Virt(P)1(X ) – (USetP
1(X ),

v
ď) where p

v
ď q if and only if

osX ^ p ď q.

Proposition

Virt(P)1 is in fact a Kleisli as well as EM object for a (necessarily
idempotent) comonad v : P1 Ñ P1 in the Pre-category
[(P0)op,Pre^]oplax given by vX (p) – osX ^ p.
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Virtualisation (2)

Remark

1. The osX become tops in Virt(P), as osX ^ p ď osX for any p.

2. If P has partial identity objects, then the PIdX become
identity objects in Virt(P), for:

§ Id-introduction for PIdX just means δ˚(PIdX ) is a top.
§ Id-elimination for PIdX in Virt(P) is equivalent to paravirtual

elimination in P, under the other three axioms of partial
identity.

Theorem
The assignment P ÞÑ Virt(P) extends to
1. a 2-functor IdxPre^,os

on Ñ IdxPre^,J
on , as well as

2. a 2-functor IdxPreˆ,^,PId
on Ñ IdxPreˆ,^,J,Id

on

ambidextrously biadjoint to ‘the’ respective inclusion 2-functor.

The left-biadjoint part also holds with respect to pseudonatural
morphisms.
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Discussions

1. The ER-descent construction is also a left-biadjoint
completion, for adding quotients. (Maietti-Rosolini 2013)

Under investigation: an analogous result for the PER-descent
construction.

2. Can we see the first two axioms of partial identity objects
systematically as an introduction-elimination pair?

3. Does a model construction based on 1-groupoids universally
add identity types to a model of ‘1-truncated’ type theory?
...
Does a model construction based on ∞-groupoids universally
add identity types to a model of type theory?

More details: for now, the short paper on sorilee.github.io
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