Limits in indexed profunctors over 2-categories An abstract theory of limits

Sori Lee

2 Apr 2023 PSSL 107, Athens Motivation

A spinoff from formal category theory:

Identify an axiomatic context for reasoning about limits.
 Example situation

Let C be a locally small category and $c \in Ob(C)$. We know:

$$C(\lim d, c) \xrightarrow{\cong} \lim C(d, c)$$
 is natural in c ,

when $d: I \rightarrow C$ is a diagram; and

$$C(\int_{I} d, c) \xrightarrow{\cong} \int_{I} C(d, c)$$
 is natural in c ,

when $d: I^{\text{op}} \times I \rightarrow C$ is an end diagram.

- How do we prove these, illuminating the idea that the two are one phenomenon? We usually do this by a careful reduction.
- Another approach: use a common abstraction. More useful when there're more limit-like concepts and more propositions.
 - This talk: the structure to prove common properties like above.

Idea

Recall: a **profunctor** $R \rightarrow S$ is a functor $R^{op} \times S \rightarrow SET$.

Let I, X categories. There is a profunctor $\operatorname{Cone}_X : X \to \operatorname{CAT}(I, X)$,

$$\operatorname{Cone}_X(x, d) := \operatorname{CAT}(I, X)(\Delta_x, d).$$

Now, a conical limit of *d* is a pair $(x \in ObX, c \in Cone_X(x, d))$ that is a universal element of the functor $Cone_X(-, d): X^{op} \to SET$.

Definition

Let $H: R \rightarrow S$ be a profunctor. A limit of $s \in ObS$ in H is a pair $(r \in ObR, h \in H(r, s))$ that is a universal element of the functor $H(-, s): R^{op} \rightarrow SET$. A colimit of r is a universal element (s, h) in $H(r, -): S \rightarrow SET$.

Are we done? No, like 0-cells are not the end of formal cat. th.

- For the naturality of limit preservation or the 'adjoints preserve' theorem, need a 2-categorical 'naturality' of Cone_X in X ∈ CAT.
- Such a 2-natural family of profunctors is the idea of an indexed profunctor over a 2-category.

Definition of indexed profunctor

Definition

Let \mathfrak{X} be a strict 2-category. An strict covariant indexed category R over \mathfrak{X} is a strict 2-functor $R_{(-)} \colon \mathfrak{X} \to CAT$.

Definition

Let R, S be indexed categories over \mathcal{X} . An **indexed profunctor** $H: R \rightarrow S$ consists of

- 1. a profunctor $H_X \colon R_X \twoheadrightarrow S_X$ for each 0-cell $X \in \mathfrak{X}$, and
- 2. a natural transformation of profunctors $H_f \colon H_X \to H_Y(R_f, S_f)$

$$\begin{array}{cccc} R_X & \stackrel{H_X}{\longrightarrow} & S_X \\ R_f & & \downarrow_{H_f} & \downarrow_{S_f} & \text{(whose codomain 'niche' stands for the} \\ R_Y & \stackrel{H_Y}{\longrightarrow} & S_Y & \text{(whose codomain 'niche' stands for the} \\ \end{array}$$

for each 1-cell $f: X \to Y$ in \mathfrak{X} ,

that satisfy coherence axioms (next slide).

Remark: A generalisation of indexed profunctor over a 1-category.

Coherence axioms

1. **Functoriality** of H_X in X:

2. Naturality of H_f in f: $R_{f} \begin{pmatrix} R_{X} \xrightarrow{H_{X}} S_{X} \\ R_{f} \downarrow R_{f'} \downarrow H_{f'} \downarrow S_{f'} \\ R_{Y} \xrightarrow{H_{Y}} S_{Y} \end{pmatrix} =$ $\begin{array}{c} R_X \xrightarrow{H_X} S_X \\ R_f \downarrow & \downarrow H_f & S_f \downarrow \stackrel{S_\theta}{\Longrightarrow} \\ R_Y \xrightarrow{H_Y} S_Y \end{array}$ whenever $\theta: f \to f'$ is a 2-cell. **Pointwise**: if $r \stackrel{h}{\leftrightarrow} s$ in $H_{\mathbf{X}}$, then $R_f r \xrightarrow{H_f h} S_f s$ $R_{\theta}r \downarrow \qquad \downarrow S_{\theta}s$ ('heteromorphic' diagram!) $R_{f'}r \xrightarrow{\longrightarrow}_{H_{c'}h} S_{f'}s$

'commute' in H_Y .

Examples of indexed profunctor

Example (Conical limits in categories)

Let $I \in CAT_0$. Take $\mathfrak{X} = CAT$, $R_X = X$, $S_X = CAT(I, X)$, $H_X(x, d) = CAT(I, X)(\Delta_x, d)$. Limits in $H \leftrightarrow$ conical limits.

Example (Ends in categories)

Let $I \in CAT_0$. Take $\mathfrak{X} = CAT$, $R_X = X$, $S_X = CAT(I^{op} \times I, X)$, $H_X(x, d) = \{ wedges \ x \rightarrow d \}$. Limits in $H \leftrightarrow ends$.

Example (Right Kan extensions in a 2-category \mathfrak{X}) Let $I, A \in \mathfrak{X}_0$. Take $R_X = \mathfrak{X}(A, X), S_X = \mathfrak{X}(I, A)^{\mathrm{op}} \times \mathfrak{X}(I, X), H_X(r, (k, d)) = \mathfrak{X}(I, X)(rk, d).$

Limits in $H \leftrightarrow$ right Kan extensions. There are (**probably many**) more of them. Application: Right 1-cells preserve limits of any type

Let $H: R \rightarrow S$ be an **indexed** profunctor over a 2-category \mathfrak{X} .

Definition

A 1-cell $f: X \to Y$ in \mathfrak{X} preserves limits of type H if whenever an $h: r \Leftrightarrow s$ in H_X is a limit, then so is $H_f(h): R_f(r) \Leftrightarrow S_f(s)$ in H_Y .

Remark. Suppose $\lambda_{S_f(s)}$: $\lim S_f(s) \Leftrightarrow S_f(s)$ is a chosen limit. Then $H_f(h): R_f(r) \Leftrightarrow S_f(s)$ limit $\Leftrightarrow \overline{H_f(H)}: R_f(r) \to \lim S_f(s)$ iso.

As an application, we can state and prove:

Theorem

Any right adjoint 1-cell $f: X \to Y$ in \mathfrak{X} preserves limits of type H.

• The proof uses every single axiom of an indexed profunctor.

Application: Naturality of limit preservation (1)

To show: $C(\lim d, c) \rightarrow \lim C(d, c)$ natural in c, for lim of any type. True even if the 1-cell in question isn't C(-, c) or limit-preserving:

Theorem

Let $H: R \rightarrow S$ be an **indexed** profunctor over a 2-category \mathfrak{X} . Let C be a category, $X, Y \in \mathfrak{X}$ objects and $\varphi: C \rightarrow \mathfrak{X}(X, Y)$ a functor. Suppose X and Y have chosen limits of type H and let $s \in Ob(S)$. Then the comparison arrow

$$\overline{H_{\phi c}(\lambda_s)} \colon R_{\phi c}(\lim s) \to \lim S_{\phi c}(s)$$

in R_Y is natural in $c \in Ob(C)$.

For hom case, set $\mathfrak{X} = CAT$, $X = C^{op}$, Y = Set, $\varphi(c) = C(-, c)$.

Proof idea: Reduce to the 'naturality' in *c* of the corresponding heteromorphism

$$H_{\phi c}(\lambda_s) \colon R_{\phi c}(\lim s) \twoheadrightarrow S_{\phi c}(s).$$

Application: Naturality of limit preservation (2)

Let $H: R \rightarrow S$ a **profunctor**, and $\rho: C \rightarrow R$ and $\sigma: C \rightarrow S$ functors.

Definition

A family of heteromorphisms $(\eta_c: \rho(c) \Leftrightarrow \sigma(c) \mid c \in ObC)$ in H is **natural** if the heteromorphic diagram

$$\begin{array}{cc} \rho(c) & \xrightarrow{\eta_c} \sigma(c) \\ \rho(a)\downarrow & \downarrow \sigma(a) \\ \rho(c') & \xrightarrow{\Theta} \sigma(c') \end{array}$$

commutes for each arrow $a: c \rightarrow c'$ in C.

Proposition

Suppose $\lambda_{\sigma(c)}$: $\lim \sigma(c) \Leftrightarrow \sigma(c)$ in H exists for each $c \in ObC$. A family $(\rho(c) \stackrel{\eta_c}{\Leftrightarrow} \sigma(c) \in H \mid c \in ObC)$ is natural if and only if the family $(\rho(c) \stackrel{\overline{\eta_c}}{\to} \lim \sigma(c) \in R \mid c \in ObC)$ of induced arrows is natural. Application: Naturality of limit preservation (3)

Lemma

Let $H: R \to S$ be an **indexed** profunctor over a 2-category \mathfrak{X} . Let C be a category, $X, Y \in \mathfrak{X}$ objects and $\varphi: C \to \mathfrak{X}(X, Y)$ a functor. Let $h: r \to s$ be a heteromorphism in H_X . Then the heteromorphism

$$H_{\phi c}(h) \colon R_{\phi c}(r) \to S_{\phi c}(s)$$

in H_Y is natural in $c \in Ob(C)$.

Proof. We need that the LHS commutes for arrows $a: c \rightarrow c'$ in C.

$$\begin{array}{ccc} R_{\varphi c}(r) \xrightarrow{H_{\varphi c}(h)} S_{\varphi c}(s) & R_{f}(r) \xrightarrow{H_{f}(h)} S_{f}(s) \\ R_{\varphi a}(r) \downarrow & \downarrow S_{\varphi a}(s) & R_{\theta}(r) \downarrow & \downarrow S_{\theta}(s) \\ R_{\varphi c'}(r) \xrightarrow{H_{\varphi c'}(h)} S_{\varphi c'}(s) & R_{f'}(r) \xrightarrow{H_{f}(h)} S_{f'}(s) \end{array}$$

But it's a special case of RHS, the 2nd axiom's pointwise form. Therefore $\overline{H_{\phi c}(\lambda_s)}$: $R_{\phi c}(\lim s) \rightarrow \lim S_{\phi c}(s)$ is natural in c.

Concluding remarks

- 1. Twofold summary:
 - Identified the 'naturality structure' (indexed profunctor) that is admitted by some prominent examples of universal constructs.
 - Showcased that practical theorems about limits can be proved in this abstract setting.
 - More abstract theorems should make this setting more useful.
- 2. Heteromorphic diagrams make the "interface" of this abstract setting pleasing to work with.
- 3. Sequel: Yoneda axioms (following Street & Walters 1978) on indexed profunctors and more generally on 'diagonal sections' of 2-functors $\mathcal{X}^{coop} \times \mathcal{X}^{op} \rightarrow CAT$.
- 4. Fibrations side: Grothendieck construction over a 2-category and its 'functoriality' with respect to indexed profunctors?
- Directions for generalisation:

 unstrictify,
 enrich (esp. along the lines of Shulman's enriched indexed categories),
 - abstract away from profunctors, go higher.
- 6. Details: "Indexed profunctors over 2-categories" in arXiv.

References

Occurrences of indexed profunctors over 1-categories:

- Wood, R.J. (1982). "Abstract proarrows I". In: Cahiers de topologie et géométrie diférentielle 23, no. 3, pp. 279–290.
- Koudenburg, Seerp Roald (2012). "Algebraic weighted colimits". PhD thesis. University of Sheffield. arXiv:1304.4079.
- Shulman, Michael (2013). "Enriched indexed categories". In: *Theory and Applications of Categories* 28, no. 21, pp. 616–695.

Reference regarding 'Yoneda axioms':

Street, R. and Walters, R. (1978). "Yoneda structures on 2-categories". Journal of Algebra 50, no. 2, pp. 350–379.

This work:

 Lee, Sori (2023). "Indexed profunctors over 2-categories". arXiv:2302.06515.